

Nuts & Bolts of Advanced Imaging

Image Reconstruction – Parallel Imaging

Michael S. Hansen, PhD

Magnetic Resonance Technology Program
National Institutes of Health, NHLBI

Speaker Name: Michael S. Hansen

I have no financial interests or relationships to disclose
with regard to the subject matter of this presentation.

Declaration of
Financial Interests or Relationships	

Outline

§ Noise correlation

§ SNR scaled reconstruction
• Obtaining images in SNR units

§ Pseudo Replica Method
• Determining the SNR (and g-map) for any parallel imaging

reconstruction

§  Iterative methods
• Non-Cartesian Parallel Imaging

§ Regularization in Iterative Methods

Noise in Parallel Imaging

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

3

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	

In practice, we are affected by noise	

Noise correlation

Noise covariance matrix

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉

% Matlab!
% eta:[Ncoils, Nsamples]!
Psi = (1/(Nsamples-1))*(eta * eta');!

We can measure this noise covariance:	

“Normal Coil”	
 “Broken Coil”	

Psi Examples – 32 Channel Coil

Examination of the noise covariance matrix is an important QA tool. Reveals broken
elements, faulty pre-amps, etc. 	

Noise Pre-Whitening

Solving Linear Equations:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2 c3

c4 c5 c6

c7 c8 c9

3

5

2

4
x1

x2

x3

3

5
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

3

Suppose you know that:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

3

Put less weight on this equation	

Noise Pre-Whitening

We would like to apply an operation such that we have unit variance in all
channels:	

Noise Pre-Whitening

More generally, we want to weight the equations with the “inverse square
root” of the noise covariance, if	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

We will solve:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

Or:	

In practice, we simply generate “pre-whitened” input data before recon	

Noise Pre-Whitening

%eta [Ncoils,Nsamples]!
%psi [Ncoils,Ncoils]!
%data [Ncoils,Nsamples]!
%csm : Coil sensitivity map!
!
psi = (1/(Nsamples-1))*(eta * eta');!
!
L = chol(psi,'lower');!
L_inv = inv(L);!
!
data = L_inv * data;!
csm = L_inv * csm;!
 !
%Now noise is “white”!
%Reshape data and do recon!
!

Matlab:	

Noise covariance matrix

“Normal Coil”	
 “Broken Coil”	

At least two broken pre-amps	

Example with test dataset	

Noise Pre-Whitening – SENSE Example
White Noise	
 “Normal Coil”	
 “Broken Coil”	

N
o

Pr
e-

W
hi

te
ni

ng
	

W
ith

 P
re

-W
hi

te
ni

ng
	

ismrm_demo_noise_decorrelation.m!

Noise Pre-Whitening – In vivo example
In vivo stress perfusion case where broken coil element resulted in non-
diagnostic images.	

Without pre-whitening	
 With pre-whitening	

Example provided by Peter Kellman, NIH 	

Signal to Noise Ratio (Definitions)

!"#(!,!) = ! !(!,!)!(!,!)!

Intuitively, SNR is measured by
repeating the experiment. 	

Signal level is the mean signal over
multiple experiments.	

Noise level is the standard deviation
over multiple experiments	

Such experiments are hard to
perform in practice. 	

SENSE – Image Synthesis with Unmixing
Coefficients

Aliased coil images	
 Unmixing Coefficients	

.* 	

SENSE – Simple Rate 4 Example

F : Image formation matrix

L : Linear transform

s =

2

666666666666666666666666666664

S1(k1)

S1(k2)

.

.

.

S1(kN
k

)

�
S2(k1)

S2(k2)

.

.

.

S2(kN
k

)

�
.

.

.

�
S

N

c

(k1)

S

N

c

(k2)

.

.

.

S

N

c

(k

N

k

)

3

777777777777777777777777777775

(8)

E =

2

6664

FC1

FC2
.

.

.

FC
N

c

3

7775
(9)

⇢(x) =

X

N

w

i

⇤ s
i

(10)

g(x) =

sX

N

|w
i

|2 (11)

2

6664

S1(x1) S1(x2)

S2(x1) S2(x2)

.

.

.

.

.

.

S

N

c

(x1) S

N

c

(x2)

3

7775

⇢(x1)

⇢(x2)

�
=

2

6664

a1

a2
.

.

.

a

N

c

3

7775
(12)

S⇢ = a (13)

˜⇢ = S†a = Ua (14)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(15)

2

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

3

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Raw data	

Calibration Data	
 Unmixing Coefficients	

Signal Processing	
 Images	

Reconstruction Pipeline	

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Raw data	

Calibration Data	
 Unmixing Coefficients	

Signal Processing	
 Images	

Reconstruction Pipeline	

Noise	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

RSS	

Images	

Maintain unit scaling	

divide	

SNR Units	

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Reconstruction	
 g-map	
 SNR Units	

~SNR 8	
 ~SNR 20	

Pseudo-Replica Method

What if unmixing coefficients are never explicitly formed:	

Raw data	
 SNR Scaled Recon	
 Reference Image	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

Add noise 	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

SNR Scaled Recon	

Pseudo 	

Replicas	

subtract	

Repeat X times	

Noise	

Replicas	

Mean	

Signal	

Noise	

SD	

SNR	

ismrm_pseudo_replica.m

Pseudo-Replica Method – Example 256 trials

SNR UNMIX	
 SNR PSEUDO	
 SNR UNMIX	
 SNR PSEUDO	

g UNMIX	
 g PSEUDO	
 g UNMIX	
 g PSEUDO	

SENSE R4	
 GRAPPA R4	

Advantage of Cartesian Undersampling

Cartesian Undersampling

“Random” Undersampling

Non-Cartesian Parallel MRI

To solve the general non-Cartesian case, we return to the original problem:	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

It is not practical to solve with direct inversion in general.	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (7)

˜⇢ : Reconstruction.

E

†
: Pseudo Inverse of E.

˜⇢ = E

†
s = FLs (8)

1

But we can use a number of different iterative solvers to arrive at the solution	

	

•  Conjugate Gradients	

•  LSQR (Matlab)	

>> help lsqr!
 lsqr lsqr Method.!
 X = lsqr(A,B) attempts to solve the system of linear equations A*X=B!
 for X if A is consistent, otherwise it attempts to solve the least!
 squares solution X that minimizes norm(B-A*X)... !
!
 X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.!
 AFUN(X,'notransp') accepts a vector input X and returns the!
 matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all!
 of the following syntaxes, you can replace A by AFUN...!

Iterative SENSE – First Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and EH:	

rho = zeros(size(csm)); %csm: coil sensitivities!
%sampling_mask: 1 where sampled, zero where not!
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);!
rho = ismrm_transform_kspace_to_image(rho,[1,2]);!
rho = sum(conj(csm) .* rho,3);!

Multiplication with EH	

s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = ismrm_transform_image_to_kspace(s, [1,2]);!
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);!

Multiplication with E	

Let’s first look at a simple Cartesian case	

function o = e_cartesian_SENSE(inp, csm, sp, transpose_indicator)!
% sp: sampling pattern!
% csm: coil sensitivities!

% s: vector of acquired data!
E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr);!
img = lsqr(E, s, 1e-5,50);!
img = reshape(img,size(csm,1),size(csm,2));!

Iterative SENSE could be implemented as:	

If we have the multiplication with E and EH implemented as a Matlab function:	

Iterative SENSE

Cartesian SENSE	
 Iterative SENSE	

Quick note on the non-uniform FFT
To implement multiplication with E and EH in the non-Cartesian case, we need to do
the non-uniform Fourier transform1,2. 	

	

In this course, we will use Jeff Fesslers “nufft” package. We recommend you
download the latest version from: 	

	

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz	

1Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009	

2Fessler J and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. IEEE TSP 2003	

%k: k-space coordinates [Nsamples, 2], range –pi:pi!
%w: Density compensation weights!
%s: Data!
!
%Prepare NUFFT!
N = [256 256]; %Matrix size!
J = [5 5]; %Kernel size!
K = N*2; %Oversampled Matrix size!
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');!
!
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);!

Iterative SENSE – non-Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and EH:	

samples = size(nufft_st.om,1); coils = numel(s)/samples;!
s = reshape(s,samples,coils);!
rho = nufft_adj(s .* repmat(sqrt(w),[1 coils]),nufft_st)./sqrt(prod(nufft_st.Kd));!
rho = sum(conj(csm) .* rho,3);!
rho = rho(:);!

Multiplication with EH	

s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = nufft(s,nufft_st)./sqrt(prod(nufft_st.Kd));!
s = s .*repmat(sqrt(w),[1 size(s,2)]);!
s = s(:);!

Multiplication with E	

Now we have the tools for the non-Cartesian case:	

From nufft_init!
Ensure operators are adjoint	

function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)!
% nufft_st: From nufft_init!
% csm: coil sensitivities, w: density compensation!

% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Non-Cartesian SENSE could be implemented as:	

If we have the multiplication with E and EH implemented as a Matlab function:	

Iterative SENSE – non-Cartesian

Due to definition of E	

Fully sampled	

24 projections	

nufft only	

24 projections	

SENSE	

Regularization – Iterative Methods

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)

1

Measured data	

Vector of zeros	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

s

0

�
=

E

L

�
⇢ (8)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. ??. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (9)

1

Equivalent to solving: 	

ismrm_demo_regularization_iterative_sense.m!

Regularization – Iterative Methods
Unregularized	
 Regularized	

R
ec

on
st

ru
ct

io
n	

SN
R
	

g-maps	

ismrm_demo_regularization_iterative_sense.m!

Regularization – Iterative Methods

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)

1

λ=0.1	
 λ=0.5	
 λ=0.8	
 λ=1.0	

λ=1.2	
 λ=1.5	
 λ=2.0	
 λ=5.0	

k-space points can be synthesized from neighbors	

SPIRiT Approach

Lustig and Pauly. Magn Reson Med. 2010 	

Full k-space	

*	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

d (29)

3

=	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

Gd = d (29)

3

SPIRiT Approach

Lustig and Pauly. Magn Reson Med. 2010 	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

Gx = x (29)

˜

x = argmin

x

{kDx� yk2 + � kGx� xk2} (30)

x : Cartesian k-space solution.

D : Sampling operator (e.g. onto non-Cartesian k-space)

y : Sampled data

G : SPIRiT convolution operator

3

We can formulate the reconstruction problem in k-space as:	

Could also be sampling operator from image to k-space	

Can be applied as multiplication in image space	

Spiral Imaging Example

Gridding	
 SENSE	
 SPIRiT	

ismrm_demo_non_cartesian.m!

Summary

§ Noise decorrelation is used to reduce the impact of varying
noise levels in receive channels.

§ SNR scaled reconstruction are a way to evaluate
reconstructions directly on the images.

§ Pseudo Replica Method allows the formation of SNR scaled
images in methods where unmixing coefficients are not
explicitly obtained

§  Iterative methods can be used for both Cartesian and non-
Cartesian methods

§ Regularization can be added to iterative methods in a
straightforward fashion

Acknowledgements

§ Jeff Fessler
• http://web.eecs.umich.edu/~fessler/code/

§ Brian Hargreaves
• http://mrsrl.stanford.edu/~brian/mritools.html

§ Miki Lustig
• http://www.eecs.berkeley.edu/~mlustig/Software.html

Download code, examples:	

http://gadgetron.sf.net/sunrise	

http://gadgetron.sourceforge.net/sunrise/	

Hands-on Cheat Sheet	

