Nuts \& Bolts of Advanced Imaging

Image Reconstruction - Parallel Imaging

Michael S. Hansen, PhD

Magnetic Resonance Technology Program
National Institutes of Health, NHLBI

Declaration of Financial Interests or Relationships

Speaker Name: Michael S. Hansen

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Outline

- Noise correlation
- SNR scaled reconstruction
- Obtaining images in SNR units
- Pseudo Replica Method
- Determining the SNR (and g-map) for any parallel imaging reconstruction
- Iterative methods
- Non-Cartesian Parallel Imaging
- Regularization in Iterative Methods

Noise in Parallel Imaging

Idealized Experiment:

$$
\mathbf{s}=\mathbf{E} \rho
$$

Noise covariance matrix

$$
\Psi_{\Upsilon, r^{\prime}}=\left\langle\eta_{\Upsilon}, \eta_{r^{\prime}}\right\rangle
$$

In practice, we are affected by noise

$$
\mathbf{s}=\mathbf{E} \boldsymbol{\rho}+\boldsymbol{\eta}
$$

We can measure this noise covariance:

```
% Matlab
% eta:[Ncoils, Nsamples]
Psi = (1/(Nsamples-1))*(eta * eta');
```


Noise correlation

Psi Examples - 32 Channel Coil

"Normal Coil"

"Broken Coil"

Examination of the noise covariance matrix is an important QA tool. Reveals broken elements, faulty pre-amps, etc.

Noise Pre-Whitening

Solving Linear Equations:
$\mathbf{A x}+\boldsymbol{\eta}=\mathbf{b}=\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4} \\ c_{5} & c_{6}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
$X_{i}:$ Random value with zerd mean $(\mu=0)$ and variance σ_{i}^{2}
Suppose you know that:

$$
\sigma_{3}^{2}=5 \sigma_{1}^{2}=5 \sigma_{2}^{2}
$$

Put less weight on this equation

Noise Pre-Whitening

We would like to apply an operation such that we have unit variance in all channels:

Noise Pre-Whitening

More generally, we want to weight the equations with the "inverse square root" of the noise covariance, if

$$
\mathbf{\Psi}=\mathbf{L} \mathbf{L}^{\mathrm{H}}
$$

We will solve:

$$
\mathbf{L}^{-1} \mathbf{A} \mathbf{x}=\mathbf{L}^{-1} \mathbf{b}
$$

Or:

$$
\mathbf{x}=\left(\mathbf{A}^{\mathrm{H}} \mathbf{\Psi}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{\Psi}^{-1} \mathbf{b}
$$

In practice, we simply generate "pre-whitened" input data before recon

Noise Pre-Whitening

Matlab:

```
%eta [Ncoils,Nsamples]
%psi [Ncoils,Ncoils]
%data [Ncoils,Nsamples]
%csm : Coil sensitivity map
psi = (1/(Nsamples-1))*(eta * eta');
L = chol(psi,'lower');
L_inv = inv(L);
data = L_inv * data;
csm = L_inv * csm;
%Now noise is "white"
%Reshape data and do recon
```


Noise covariance matrix

Example with test dataset

At least two broken pre-amps

Noise Pre-Whitening - SENSE Example

ismrm_demo_noise_decorrelation.m

Noise Pre-Whitening - In vivo example

In vivo stress perfusion case where broken coil element resulted in nondiagnostic images.

Without pre-whitening

With pre-whitening

Signal to Noise Ratio (Definitions)

Intuitively, SNR is measured by repeating the experiment.

Signal level is the mean signal over multiple experiments.

Noise level is the standard deviation over multiple experiments

Such experiments are hard to perform in practice.
$\operatorname{SNR}(x, y)=\frac{S(x, y)}{\sigma(x, y)}$

SENSE - Image Synthesis with Unmixing Coefficients

Aliased coil images

Unmixing Coefficients

SENSE - Simple Rate 4 Example

$$
\tilde{\rho}\left(x_{1}\right)=\sum_{i=0}^{N_{c}} u_{i} a_{i} \quad g\left(x_{1}\right)=\sqrt{\sum_{i=0}^{N_{c}}\left|u_{i}\right|^{2}} \sqrt{\sum_{i=0}^{N_{c}}\left|S_{i}\right|^{2}}
$$

SENSE

SENSE g-factor

Reconstruction in SNR Units

Reconstruction Pipeline

```
Raw data }\longrightarrow\mathrm{ Signal Processing }\uparrow\mathrm{ Images
Calibration Data \(\longrightarrow\) Unmixing Coefficients
```


Reconstruction in SNR Units

Reconstruction Pipeline

Reconstruction in SNR Units

Reconstruc 1

~SNR 8

Pseudo-Replica Method

What if unmixing coefficients are never explicitly formed:

$$
\sigma^{2}=1 \quad \sigma^{2}=1
$$

ismrm_pseudo_replica.m

Pseudo-Replica Method - Example 256 trials

SENSE R4
SNR UNMIX
SNR PSEUDO

GRAPPA R4
SNR UNMIX

g UNMIX
g PSEUDO
g UNMIX
g PSEUDO

Advantage of Cartesian Undersampling

Cartesian Undersampling

"Random" Undersampling

Non-Cartesian Parallel MRI

To solve the general non-Cartesian case, we return to the original problem:

$$
\mathbf{s}=\mathbf{E} \boldsymbol{\rho} \quad \tilde{\boldsymbol{\rho}}=\arg \min _{\boldsymbol{o}}\left\{\|\mathbf{E} \boldsymbol{\rho}-\mathbf{s}\|_{2}\right\}
$$

It is not practical to solve with direct inversion in general.
But we can use a number of different iterative solvers to arrive at the solution

- Conjugate Gradients
- LSQR (Matlab)

```
>> help lsqr
    lsqr lsqr Method.
        X = lsqr(A,B) attempts to solve the system of linear equations A*X=B
        for X if A is consistent, otherwise it attempts to solve the least
        squares solution X that minimizes norm(B-A*X)...
        X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.
        AFUN(X,'notransp') accepts a vector input X and returns the
        matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all
        of the following syntaxes, you can replace A by AFUN...
```


Iterative SENSE - First Cartesian

To use LSQR (or Conjugate Gradients), we "just" need to be able to write a function that does the multiplication with E and E^{H} :

Let's first look at a simple Cartesian case

Multiplication with E^{H}

```
rho = zeros(size(csm)); %csm: coil sensitivities
%sampling_mask: 1 where sampled, zero where not
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);
rho = ismrm_transform_kspace_to_image(rho,[1,2]);
rho = sum(conj(csm) .* rho,3);
```


Multiplication with E

```
s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;
s = ismrm_transform_image_to_kspace(s, [1,2]);
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);
```


Iterative SENSE

If we have the multiplication with E and E^{H} implemented as a Matlab function:

```
function o = e_cartesian_SENSE(inp, csm, sp, transpose_indicator)
% sp: sampling pattern
% csm: coil sensitivities
```

Iterative SENSE could be implemented as:

```
% s: vector of acquired data
E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr);
img = lsqr(E, s, 1e-5,50);
img = reshape(img,size(csm,1),size(csm,2));
```

Cartesian SENSE

Iterative SENSE

Quick note on the non-uniform FFT

To implement multiplication with E and E^{H} in the non-Cartesian case, we need to do the non-uniform Fourier transform ${ }^{1,2}$.

In this course, we will use Jeff Fesslers "nufft" package. We recommend you download the latest version from:

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz

```
%k: k-space coordinates [Nsamples, 2], range -pi:pi
%w: Density compensation weights
%s: Data
%Prepare NUFFT
N = [256 256]; %Matrix size
J = [5 5]; %Kernel size
K = N*2; %Oversampled Matrix size
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);
```


Iterative SENSE - non-Cartesian

To use LSQR (or Conjugate Gradients), we "just" need to be able to write a function that does the multiplication with E and E^{H} :

Now we have the tools for the non-Cartesian case:

Multiplication with E^{H}

```
samples = size(nufft_st.om,l); coils = numel(s)/samples;
s = reshape(s,samples,coils);
rho = nufft_adj(s .* repmat(sqrt(w),[1 coils]),nufft_st)./sqrt(prod(nufft_st.Kd));
rho = sum(conj(csm) .* rho,3);
rho = rho(:);
Ensure operators are adjoint
```



```
s = repmat(reshape(rho,fe(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;
s = nufft(s,nufft_st).//sqrt(prod(nufft_st.Kd));
s = s .*repmat(sqrt(w),[1 size(s,2)]);
s = s(:);
```


Iterative SENSE - non-Cartesian

If we have the multiplication with E and E^{H} implemented as a Matlab function:

```
function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)
% nufft_st: From nufft_init
% csm: coil sensitivities, w: density compensation
```

Non-Cartesian SENSE could be implemented as:

```
% s: vector of acquired data
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);
img = reshape(img,size(csm,1),size(csm,2));
```

Due to definition of E

Fully sampled

24 projections nufft only

24 projections SENSE

Regularization - Iterative Methods

$$
\tilde{\boldsymbol{\rho}}=\arg \min _{\boldsymbol{\rho}}\left\{\|\mathbf{E} \boldsymbol{\rho}-\mathbf{s}\|_{2}+\lambda\|\mathbf{L} \boldsymbol{\rho}\|_{2}\right\}
$$

Equivalent to solving:
$\underset{\text { Vector of zeros } \longrightarrow}{\text { Measured data } \longrightarrow}\left[\begin{array}{l}\mathbf{S} \\ 0\end{array}\right]=\left[\begin{array}{l}\mathbf{E} \\ \mathbf{L}\end{array}\right] \boldsymbol{\rho}$
ismrm_demo_regularization_iterative_sense.m

Regularization - Iterative Methods

ismrm_demo_regularization_iterative_sense.m

Regularization - Iterative Methods

$$
\tilde{\boldsymbol{\rho}}=\arg \min _{\boldsymbol{\rho}}\left\{\|\mathbf{E} \boldsymbol{\rho}-\mathbf{s}\|_{2}+\lambda\|\mathbf{L} \boldsymbol{\rho}\|_{2}\right\}
$$

SPIRiT Approach

k-space points can be synthesized from neighbors

Full k-space

$$
\mathrm{Gd}=\mathrm{d}
$$

SPIRiT Approach

We can formulate the reconstruction problem in k-space as:

Can be applied as multiplication in image space

Could also be sampling operator from image to k-space

Spiral Imaging Example

Gridding
SENSE
SPIRiT

ismrm_demo_non_cartesian.m

Summary

- Noise decorrelation is used to reduce the impact of varying noise levels in receive channels.
- SNR scaled reconstruction are a way to evaluate reconstructions directly on the images.
- Pseudo Replica Method allows the formation of SNR scaled images in methods where unmixing coefficients are not explicitly obtained
- Iterative methods can be used for both Cartesian and nonCartesian methods
- Regularization can be added to iterative methods in a straightforward fashion

Acknowledgements

- Jeff Fessler
- http://web.eecs.umich.edu/~fessler/code/
- Brian Hargreaves
- http://mrsrl.stanford.edu/~brian/mritools.html
- Miki Lustig
- http://www.eecs.berkeley.edu/~mlustig/Software.html

Download code, examples: http://gadgetron.sf.net/sunrise

http://gadgetron.sourceforge.net/sunrise/

ISMRM Sunrise Practical Session
This document contains the second set of practical exercises for the ISMRM course on parallel imaging.

ISMRM Sunrise Course on

Contents

- Excercise Data
- Noise Pre-Whitening

SNR Scaled Reconstruction

- Pseudo Replica Method
- Iterative Non-Cartesian SENSE
- Additional Demos

Michael S. Hansen - michael.hansen@nih.gov
Philip Beatty - philip.beatty@sri.utoronto.ca

Slides

- Hansen Slides

Source Code and Examples

Download ismrm sunrise parallel.zip with source code and

Excercise Data

All the data used in this set of exercises can be found in the file hansen_exercises.mat. We will start by clearing the workspace and loa

```
close all; clear all;
load hansen_exercises.mat
whos
```

Name	Size	Bytes	Class	Attributes
data	$256 \times 256 \times 8$	8388608	double	complex
data_spiral	18176×8	2326528	double	complex
k_spiral	18176×2	290816	double	
noise_color	$256 \times 256 \times 8$	8388608	double	complex
noise_spiral	18176×8	2326528	double	complex
reg_img	256×256	524288	double	
smaps	$256 \times 256 \times 8$	8388608	double	complex
sp	256×256	524288	double	
w_spiral	18176×1	145408	double	

- Beatty Practical Session
- Hansen Practical Session

