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Noise in Parallel Imaging 
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Basic MRI signal equation with coil sensitivity endowing looks like:
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⇢(x) : The imaged object.

S
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(k) : Signal in receiver coil � at position k in k-space.
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We can write this as matrix equation:
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s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	


In practice, we are affected by noise	


Noise correlation 

Noise covariance matrix 

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉 

% Matlab!
% eta:[Ncoils, Nsamples]!
Psi = (1/(Nsamples-1))*(eta * eta');!

We can measure this noise covariance:	




“Normal Coil”	
 “Broken Coil”	


Psi Examples – 32 Channel Coil 

Examination of the noise covariance matrix is an important QA tool. Reveals broken 
elements, faulty pre-amps, etc. 	




Noise Pre-Whitening 

Solving Linear Equations:	
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Suppose you know that:	
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Put less weight on this equation	




Noise Pre-Whitening 

We would like to apply an operation such that we have unit variance in all 
channels:	




Noise Pre-Whitening 

More generally, we want to weight the equations with the “inverse square 
root” of the noise covariance, if	
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We will solve:	
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Or:	


In practice, we simply generate “pre-whitened” input data before recon	




Noise Pre-Whitening 

%eta [Ncoils,Nsamples]!
%psi [Ncoils,Ncoils]!
%data [Ncoils,Nsamples]!
%csm : Coil sensitivity map!
!
psi = (1/(Nsamples-1))*(eta * eta');!
!
L = chol(psi,'lower');!
L_inv = inv(L);!
!
data = L_inv * data;!
csm = L_inv * csm;!
 !
%Now noise is “white”!
%Reshape data and do recon!
!

Matlab:	




Noise covariance matrix 

“Normal Coil”	
 “Broken Coil”	


At least two broken pre-amps	


Example with test dataset	




Noise Pre-Whitening – SENSE Example 
White Noise	
 “Normal Coil”	
 “Broken Coil”	
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ismrm_demo_noise_decorrelation.m!



Noise Pre-Whitening – In vivo example 
In vivo stress perfusion case where broken coil element resulted in non-
diagnostic images.	


Without pre-whitening	
 With pre-whitening	


Example provided by Peter Kellman, NIH 	




Signal to Noise Ratio (Definitions) 

!"#(!,!) = ! !(!,!)!(!,!)!

Intuitively, SNR is measured by 
repeating the experiment. 	


Signal level is the mean signal over 
multiple experiments.	


Noise level is the standard deviation 
over multiple experiments	


Such experiments are hard to 
perform in practice. 	




SENSE – Image Synthesis with Unmixing 
Coefficients 

Aliased coil images	
 Unmixing Coefficients	


.* 	




SENSE – Simple Rate 4 Example 

F : Image formation matrix

L : Linear transform

s =
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Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	


Raw data	


Calibration Data	
 Unmixing Coefficients	


Signal Processing	
 Images	


Reconstruction Pipeline	




Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	


Raw data	


Calibration Data	
 Unmixing Coefficients	


Signal Processing	
 Images	


Reconstruction Pipeline	


Noise	
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RSS	


Images	


Maintain unit scaling	


divide	


SNR Units	




Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	


Reconstruction	
 g-map	
 SNR Units	


~SNR 8	
 ~SNR 20	




Pseudo-Replica Method 

What if unmixing coefficients are never explicitly formed:	


Raw data	
 SNR Scaled Recon	
 Reference Image	
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Add noise      	
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SNR Scaled Recon	

Pseudo 	

Replicas	


subtract	


Repeat X times	


Noise	

Replicas	


Mean	

Signal	


Noise	

SD	


SNR	


ismrm_pseudo_replica.m 



Pseudo-Replica Method – Example 256 trials 

SNR UNMIX	
 SNR PSEUDO	
 SNR UNMIX	
 SNR PSEUDO	


g UNMIX	
 g PSEUDO	
 g UNMIX	
 g PSEUDO	


SENSE R4	
 GRAPPA R4	




Advantage of Cartesian Undersampling 

Cartesian Undersampling 

“Random” Undersampling 



Non-Cartesian Parallel MRI 

To solve the general non-Cartesian case, we return to the original problem:	


Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to
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It is not practical to solve with direct inversion in general.	


Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E
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s (7)

˜⇢ : Reconstruction.

E

†
: Pseudo Inverse of E.
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s = FLs (8)
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But we can use a number of different iterative solvers to arrive at the solution	

	


•  Conjugate Gradients	

•  LSQR (Matlab)	


>> help lsqr!
 lsqr   lsqr Method.!
    X = lsqr(A,B) attempts to solve the system of linear equations A*X=B!
    for X if A is consistent, otherwise it attempts to solve the least!
    squares solution X that minimizes norm(B-A*X)... !
!
    X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.!
    AFUN(X,'notransp') accepts a vector input X and returns the!
    matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all!
    of the following syntaxes, you can replace A by AFUN...!



Iterative SENSE – First Cartesian 

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function 
that does the multiplication with E and EH:	


rho = zeros(size(csm)); %csm: coil sensitivities!
%sampling_mask: 1 where sampled, zero where not!
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);!
rho = ismrm_transform_kspace_to_image(rho,[1,2]);!
rho = sum(conj(csm) .* rho,3);!

Multiplication with EH	


s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = ismrm_transform_image_to_kspace(s, [1,2]);!
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);!

Multiplication with E	


Let’s first look at a simple Cartesian case	




function o =  e_cartesian_SENSE(inp, csm, sp, transpose_indicator)!
% sp: sampling pattern!
% csm: coil sensitivities!

% s: vector of acquired data!
E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr);!
img = lsqr(E, s, 1e-5,50);!
img = reshape(img,size(csm,1),size(csm,2));!

Iterative SENSE could be implemented as:	


If we have the multiplication with E and EH implemented as a Matlab function:	


Iterative SENSE 

Cartesian SENSE	
 Iterative SENSE	




Quick note on the non-uniform FFT 
To implement multiplication with E and EH in the non-Cartesian case, we need to do 
the non-uniform Fourier transform1,2. 	

	

In this course, we will use Jeff Fesslers “nufft” package. We recommend you 
download the latest version from: 	

	


http://web.eecs.umich.edu/~fessler/irt/fessler.tgz	


1Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009	

2Fessler J and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. IEEE TSP 2003	


%k: k-space coordinates [Nsamples, 2], range –pi:pi!
%w: Density compensation weights!
%s: Data!
!
%Prepare NUFFT!
N = [256 256]; %Matrix size!
J = [5 5];     %Kernel size!
K = N*2;       %Oversampled Matrix size!
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');!
!
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);!



Iterative SENSE – non-Cartesian 

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function 
that does the multiplication with E and EH:	


samples = size(nufft_st.om,1); coils = numel(s)/samples;!
s = reshape(s,samples,coils);!
rho = nufft_adj(s .* repmat(sqrt(w),[1 coils]),nufft_st)./sqrt(prod(nufft_st.Kd));!
rho = sum(conj(csm) .* rho,3);!
rho = rho(:);!

Multiplication with EH	


s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = nufft(s,nufft_st)./sqrt(prod(nufft_st.Kd));!
s = s .*repmat(sqrt(w),[1 size(s,2)]);!
s = s(:);!

Multiplication with E	


Now we have the tools for the non-Cartesian case:	


From nufft_init!
Ensure operators are adjoint	




function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)!
% nufft_st: From nufft_init!
% csm: coil sensitivities, w: density compensation!

% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Non-Cartesian SENSE could be implemented as:	


If we have the multiplication with E and EH implemented as a Matlab function:	


Iterative SENSE – non-Cartesian 

Due to definition of E	


Fully sampled	

24 projections	


nufft only	

24 projections	


SENSE	




Regularization – Iterative Methods 

Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)
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Vector of zeros	
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. ??. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (9)

1

Equivalent to solving: 	


ismrm_demo_regularization_iterative_sense.m!



Regularization – Iterative Methods 
Unregularized	
 Regularized	
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ismrm_demo_regularization_iterative_sense.m!



Regularization – Iterative Methods 

Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of
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 λ=0.5	
 λ=0.8	
 λ=1.0	


λ=1.2	
 λ=1.5	
 λ=2.0	
 λ=5.0	




k-space points can be synthesized from neighbors	


SPIRiT Approach 

Lustig and Pauly. Magn Reson Med. 2010 	


Full k-space	
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SPIRiT Approach 

Lustig and Pauly. Magn Reson Med. 2010 	


˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H
 

�1
A

��1
A

H
 

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

Gx = x (29)

˜

x = argmin

x

{kDx� yk2 + � kGx� xk2} (30)

x : Cartesian k-space solution.

D : Sampling operator (e.g. onto non-Cartesian k-space)

y : Sampled data

G : SPIRiT convolution operator

3

We can formulate the reconstruction problem in k-space as:	


Could also be sampling operator from image to k-space	


Can be applied as multiplication in image space	




Spiral Imaging Example 

Gridding	
 SENSE	
 SPIRiT	


ismrm_demo_non_cartesian.m!



Summary 

§ Noise decorrelation is used to reduce the impact of varying 
noise levels in receive channels. 

§ SNR scaled reconstruction are a way to evaluate 
reconstructions directly on the images. 

§ Pseudo Replica Method allows the formation of SNR scaled 
images in methods where unmixing coefficients are not 
explicitly obtained 

§  Iterative methods can be used for both Cartesian and non-
Cartesian methods 

§ Regularization can be added to iterative methods in a 
straightforward fashion 
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Download code, examples:	

http://gadgetron.sf.net/sunrise	




http://gadgetron.sourceforge.net/sunrise/	


Hands-on Cheat Sheet	



