Nuts & Bolts of Advanced Imaging

Image Reconstruction – Parallel Imaging

Michael S. Hansen, PhD

Magnetic Resonance Technology Program National Institutes of Health, NHLBI

Declaration of Financial Interests or Relationships

Speaker Name: Michael S. Hansen

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Outline

- Noise correlation
- SNR scaled reconstruction
 - Obtaining images in SNR units
- Pseudo Replica Method
 - Determining the SNR (and g-map) for any parallel imaging reconstruction
- Iterative methods
 - Non-Cartesian Parallel Imaging
- Regularization in Iterative Methods

Noise in Parallel Imaging

Idealized Experiment:

$$s = E \rho$$

In practice, we are affected by noise

 $\mathbf{s} = \mathbf{E} \boldsymbol{
ho} + \boldsymbol{\eta}$

We can measure this noise covariance:

% Matlab
% eta:[Ncoils, Nsamples]
Psi = (1/(Nsamples-1))*(eta * eta');

Noise covariance matrix

$$\Psi_{\Upsilon,\Upsilon'} = \langle \eta_{\Upsilon}, \eta_{\Upsilon'} \rangle$$

Psi Examples – 32 Channel Coil

"Normal Coil"

Examination of the noise covariance matrix is an important QA tool. Reveals broken elements, faulty pre-amps, etc.

Solving Linear Equations:

$$\mathbf{Ax} + \boldsymbol{\eta} = \mathbf{b} = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \\ c_5 & c_6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$X_i : \text{Random value with zero mean } (\mu = 0) \text{ and variance } \sigma_i^2$$
Suppose you know that:

$$\sigma_3^2 = 5\sigma_1^2 = 5\sigma_2^2$$

Put less weight on this equation

We would like to apply an operation such that we have unit variance in all channels:

More generally, we want to weight the equations with the "inverse square root" of the noise covariance, if

$$\Psi = \mathrm{L}\mathrm{L}^{\mathrm{H}}$$

We will solve:

$$\mathbf{L}^{-1}\mathbf{A}\mathbf{x} = \mathbf{L}^{-1}\mathbf{b}$$

Or:

$$\mathbf{x} = \left(\mathbf{A}^{\mathrm{H}} \mathbf{\Psi}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{\Psi}^{-1} \mathbf{b}$$

In practice, we simply generate "pre-whitened" input data before recon

Matlab:

```
%eta [Ncoils,Nsamples]
%psi [Ncoils,Ncoils]
%data [Ncoils,Nsamples]
%csm : Coil sensitivity map
psi = (1/(Nsamples-1))*(eta * eta');
L = chol(psi,'lower');
L inv = inv(L);
data = L inv * data;
csm = L inv * csm;
%Now noise is "white"
%Reshape data and do recon
```

Noise covariance matrix

Example with test dataset

At least two broken pre-amps

Noise Pre-Whitening – SENSE Example

"Broken Coil" White Noise "Normal Coil" No Pre-Whitening With Pre-Whitening

ismrm_demo_noise_decorrelation.m

Noise Pre-Whitening – In vivo example

In vivo stress perfusion case where broken coil element resulted in nondiagnostic images.

Without pre-whitening

With pre-whitening

Example provided by Peter Kellman, NIH

Signal to Noise Ratio (Definitions)

$$SNR(x, y) = \frac{S(x, y)}{\sigma(x, y)}$$

Intuitively, SNR is measured by repeating the experiment.

Signal level is the mean signal over multiple experiments.

Noise level is the standard deviation over multiple experiments

Such experiments are hard to perform in practice.

SENSE – Image Synthesis with Unmixing Coefficients

SENSE – Simple Rate 4 Example

$$\tilde{\rho}(x_1) = \sum_{i=0}^{N_c} u_i a_i$$

$$g(x_1) = \sqrt{\sum_{i=0}^{N_c} |u_i|^2} \sqrt{\sum_{i=0}^{N_c} |S_i|^2}$$

SENSE g-factor

Reconstruction in SNR Units

Reconstruction Pipeline

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)

Reconstruction in SNR Units

Reconstruction Pipeline

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)

Reconstruction in SNR Units

Pseudo-Replica Method

What if unmixing coefficients are never explicitly formed:

ismrm_pseudo_replica.m

Pseudo-Replica Method – Example 256 trials

Advantage of Cartesian Undersampling

Cartesian Undersampling

"Random" Undersampling

To solve the general non-Cartesian case, we return to the original problem:

$$\mathbf{s} = \mathbf{E} \boldsymbol{\rho} \qquad \quad \tilde{\boldsymbol{
ho}} = \arg\min_{\boldsymbol{\rho}} \left\{ \|\mathbf{E} \boldsymbol{
ho} - \mathbf{s}\|_2 \right\}$$

It is not practical to solve with direct inversion in general.

But we can use a number of different iterative solvers to arrive at the solution

- Conjugate Gradients
- LSQR (Matlab)

```
>> help lsqr
lsqr lsqr Method.
  X = lsqr(A,B) attempts to solve the system of linear equations A*X=B
  for X if A is consistent, otherwise it attempts to solve the least
  squares solution X that minimizes norm(B-A*X)...
  X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.
  AFUN(X, 'notransp') accepts a vector input X and returns the
```

matrix-vector product A*X while AFUN(X, 'transp') returns A'*X. In all of the following syntaxes, you can replace A by AFUN...

To use LSQR (or Conjugate Gradients), we "just" need to be able to write a function that does the multiplication with E and E^H:

Let's first look at a simple Cartesian case

Multiplication with E^H

```
rho = zeros(size(csm)); %csm: coil sensitivities
%sampling_mask: 1 where sampled, zero where not
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);
rho = ismrm_transform_kspace_to_image(rho,[1,2]);
rho = sum(conj(csm) .* rho,3);
```

Multiplication with E

s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;

```
s = ismrm_transform_image_to_kspace(s, [1,2]);
```

```
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);
```

Iterative SENSE

If we have the multiplication with E and E^{H} implemented as a Matlab function:

```
function o = e_cartesian_SENSE(inp, csm, sp, transpose_indicator)
% sp: sampling pattern
% csm: coil sensitivities
```

Iterative SENSE could be implemented as:

% s: vector of acquired data E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr); img = lsqr(E, s, 1e-5,50); img = reshape(img,size(csm,1),size(csm,2));

Cartesian SENSE

Iterative SENSE

Quick note on the non-uniform FFT

To implement multiplication with E and E^{H} in the non-Cartesian case, we need to do the non-uniform Fourier transform^{1,2}.

In this course, we will use Jeff Fesslers "nufft" package. We recommend you download the latest version from:

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz

```
%k: k-space coordinates [Nsamples, 2], range -pi:pi
%w: Density compensation weights
%s: Data
%Prepare NUFFT
N = [256 256]; %Matrix size
J = [5 5]; %Kernel size
K = N*2; %Oversampled Matrix size
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);
```

¹Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009 ²Fessler J and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. IEEE TSP 2003 To use LSQR (or Conjugate Gradients), we "just" need to be able to write a function that does the multiplication with E and E^H:

Now we have the tools for the non-Cartesian case:

Multiplication with E^H

Iterative SENSE – non-Cartesian

If we have the multiplication with E and E^{H} implemented as a Matlab function:

```
function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)
% nufft_st: From nufft_init
% csm: coil sensitivities, w: density compensation
```

Non-Cartesian SENSE could be implemented as:

$$\tilde{\boldsymbol{\rho}} = \arg\min_{\boldsymbol{\rho}} \left\{ \left\| \mathbf{E} \boldsymbol{\rho} - \mathbf{s} \right\|_{2} + \lambda \left\| \mathbf{L} \boldsymbol{\rho} \right\|_{2} \right\}$$

Equivalent to solving:

Measured data
$$\rightarrow \begin{bmatrix} \mathbf{S} \\ \mathbf{O} \end{bmatrix} = \begin{bmatrix} \mathbf{E} \\ \mathbf{L} \end{bmatrix} \boldsymbol{\rho}$$

Vector of zeros $\rightarrow \begin{bmatrix} \mathbf{S} \\ \mathbf{O} \end{bmatrix}$

ismrm_demo_regularization_iterative_sense.m

Regularization – Iterative Methods

ismrm_demo_regularization_iterative_sense.m

Regularization – Iterative Methods

$$\tilde{\boldsymbol{\rho}} = \arg\min_{\boldsymbol{\rho}} \left\{ \left\| \mathbf{E} \boldsymbol{\rho} - \mathbf{s} \right\|_{2} + \lambda \left\| \mathbf{L} \boldsymbol{\rho} \right\|_{2} \right\}$$

SPIRiT Approach

k-space points can be synthesized from neighbors

 $\mathbf{G}\mathbf{d} = \mathbf{d}$

SPIRiT Approach

We can formulate the reconstruction problem in *k*-space as:

$$\tilde{\mathbf{x}} = \arg \min_{\mathbf{x}} \{ \| \mathbf{D}\mathbf{x} - \mathbf{y} \|_{2} + \lambda \| \mathbf{G}\mathbf{x} - \mathbf{x} \|_{2} \}$$

$$\mathbf{x} : \text{Cartesian } k \text{-space solution.}$$

$$\mathbf{D} : \text{Sampling operator (e.g. onto non-Cartesian } k \text{-space})$$

$$\mathbf{y} : \text{Sampled data}$$

$$\mathbf{G} : \text{SPIRiT convolution operator}$$

$$\text{Can be applied as multiplication in image space}$$

Could also be sampling operator from image to k-space

Lustig and Pauly. Magn Reson Med. 2010

Spiral Imaging Example

ismrm_demo_non_cartesian.m

Summary

- Noise decorrelation is used to reduce the impact of varying noise levels in receive channels.
- SNR scaled reconstruction are a way to evaluate reconstructions directly on the images.
- Pseudo Replica Method allows the formation of SNR scaled images in methods where unmixing coefficients are not explicitly obtained
- Iterative methods can be used for both Cartesian and non-Cartesian methods
- Regularization can be added to iterative methods in a straightforward fashion

Acknowledgements

- Jeff Fessler
 - http://web.eecs.umich.edu/~fessler/code/
- Brian Hargreaves
 - http://mrsrl.stanford.edu/~brian/mritools.html
- Miki Lustig
 - http://www.eecs.berkeley.edu/~mlustig/Software.html

Download code, examples: http://gadgetron.sf.net/sunrise

http://gadgetron.sourceforge.net/sunrise/

- 1

ISMRM Sunrise Practical Session

ISMRM Sunrise Course on Con

Teachers

Michael S. Hansen - michael.hansen@nih.gov Philip Beatty - philip.beatty@sri.utoronto.ca

Slides

Hansen Slides

Source Code and Examples

Download ismrm sunrise parallel.zip with source code and

Exercises

- **Beatty Practical Session**
- Hansen Practical Session

This document contains the second set of practical exercises for the ISMRM course on parallel imaging.

tents	
Excercise Data	

- Noise Pre-Whitening
- SNR Scaled Reconstruction
- Pseudo Replica Method
- Iterative Non-Cartesian SENSE
- Additional Demos

Excercise Data

All the data used in this set of exercises can be found in the file hansen exercises.mat. We will start by clearing the workspace and loa

close all; clear all; load hansen exercises.mat

whos

Name	Size	Bytes	Class	Attributes
data	256x256x8	8388608	double	complex
data_spiral	18176x8	2326528	double	complex
k spiral	18176x2	290816	double	
noise color	256x256x8	8388608	double	complex
noise spiral	18176x8	2326528	double	complex
reg img	256x256	524288	double	
smaps	256x256x8	8388608	double	complex
sp	256x256	524288	double	
w spiral	18176x1	145408	double	

Noise Pre-Whitening

Hands-on Cheat Sheet