

Nuts & Bolts of Advanced Imaging

Image Reconstruction – Parallel Imaging

Michael S. Hansen, PhD

Magnetic Resonance Technology Program
National Institutes of Health, NHLBI

No conflicts of interest to disclose

Outline

§ Noise correlation

§ SNR scaled reconstruction
• Obtaining images in SNR units

§ Pseudo Replica Method
• Determining the SNR (and g-map) for any parallel imaging

reconstruction

§  Iterative methods
• Non-Cartesian Parallel Imaging

§ Regularization in Iterative Methods

Noise in Parallel Imaging

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

3

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	

In practice, we are affected by noise	

Noise correlation

Noise covariance matrix

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉

% Matlab!
% eta:[Ncoils, Nsamples]!
Psi = (1/(Nsamples-1))*(eta * eta');!

We can measure this noise covariance:	

“Normal Coil”	
 “Broken Coil”	

Psi Examples – 32 Channel Coil

Examination of the noise covariance matrix is an important QA tool. Reveals broken
elements, faulty pre-amps, etc. 	

Noise Pre-Whitening

Solving Linear Equations:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2 c3

c4 c5 c6

c7 c8 c9

3

5

2

4
x1

x2

x3

3

5
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

3

Suppose you know that:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

3

Put less weight on this equation	

Noise Pre-Whitening

We would like to apply an operation such that we have unit variance in all
channels:	

Noise Pre-Whitening

More generally, we want to weigh the equations with the “inverse square
root” of the noise covariance, if	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

We will solve:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

Or:	

In practice, we simply generate “pre-whitened” input data before recon	

Noise Pre-Whitening

%eta [Ncoils,Nsamples]!
%psi [Ncoils,Ncoils]!
%data [Ncoils,Nsamples]!
%csm : Coil sensitivity map!
!
psi = (1/(Nsamples-1))*(eta * eta');!
!
L = chol(psi,'lower');!
L_inv = inv(L);!
!
data = L_inv * data;!
csm = L_inv * csm;!
 !
%Now noise is “white”!
%Reshape data and do recon!
!

Matlab:	

Noise covariance matrix

“Normal Coil”	
 “Broken Coil”	

At least two broken pre-amps	

Example with test dataset	

Noise Pre-Whitening – SENSE Example
White Noise	
 “Normal Coil”	
 “Broken Coil”	

N
o

Pr
e-

W
hi

te
ni

ng
	

W
ith

 P
re

-W
hi

te
ni

ng
	

ismrm_demo_noise_decorrelation.m!

SENSE – Image Synthesis with Unmixing
Coefficients

Aliased coil images	
 Unmixing Coefficients	

.* 	

SENSE – Simple Rate 4 Example

F : Image formation matrix

L : Linear transform

s =

2

666666666666666666666666666664

S1(k1)

S1(k2)

.

.

.

S1(kN
k

)

�
S2(k1)

S2(k2)

.

.

.

S2(kN
k

)

�
.

.

.

�
S

N

c

(k1)

S

N

c

(k2)

.

.

.

S

N

c

(k

N

k

)

3

777777777777777777777777777775

(8)

E =

2

6664

FC1

FC2
.

.

.

FC
N

c

3

7775
(9)

⇢(x) =

X

N

w

i

⇤ s
i

(10)

g(x) =

sX

N

|w
i

|2 (11)

2

6664

S1(x1) S1(x2)

S2(x1) S2(x2)

.

.

.

.

.

.

S

N

c

(x1) S

N

c

(x2)

3

7775

⇢(x1)

⇢(x2)

�
=

2

6664

a1

a2
.

.

.

a

N

c

3

7775
(12)

S⇢ = a (13)

˜⇢ = S†a = Ua (14)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(15)

2

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

3

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Raw data	

Calibration Data	
 Unmixing Coefficients	

Signal Processing	
 Images	

Reconstruction Pipeline	

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Raw data	

Calibration Data	
 Unmixing Coefficients	

Signal Processing	
 Images	

Reconstruction Pipeline	

Noise	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

RSS	

Images	

Maintain unit scaling	

divide	

SNR Units	

Reconstruction in SNR Units

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	

Reconstruction	
 g-map	
 SNR Units	

~SNR 8	
 ~SNR 20	

Pseudo-Replica Method

What if unmixing coefficients are never explicitly formed:	

Raw data	
 SNR Scaled Recon	
 Reference Image	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

Add noise 	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

 ! L

�1
(23)

�

2
= 1 (24)

3

SNR Scaled Recon	

Pseudo 	

Replicas	

subtract	

Repeat X times	

Noise	

Replicas	

Mean	

Signal	

Noise	

SD	

SNR	

ismrm_pseudo_replica.m

Pseudo-Replica Method – Example 256 trials

SNR UNMIX	
 SNR PSEUDO	
 SNR UNMIX	
 SNR PSEUDO	

g UNMIX	
 g PSEUDO	
 g UNMIX	
 g PSEUDO	

SENSE R4	
 GRAPPA R4	

Advantage of Cartesian Undersampling

Cartesian Undersampling

“Random” Undersampling

Non-Cartesian Parallel MRI

To solve the general non-Cartesian case, we return to the original problem:	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

It is not practical to solve with direct inversion in general.	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (7)

˜⇢ : Reconstruction.

E

†
: Pseudo Inverse of E.

˜⇢ = E

†
s = FLs (8)

1

But we can use a number of different iterative solvers to arrive at the solution	

	

•  Conjugate Gradients	

•  LSQR (Matlab)	

>> help lsqr!
 lsqr lsqr Method.!
 X = lsqr(A,B) attempts to solve the system of linear equations A*X=B!
 for X if A is consistent, otherwise it attempts to solve the least!
 squares solution X that minimizes norm(B-A*X)... !
!
 X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.!
 AFUN(X,'notransp') accepts a vector input X and returns the!
 matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all!
 of the following syntaxes, you can replace A by AFUN...!

Iterative SENSE – First Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and EH:	

rho = zeros(size(csm)); %csm: coil sensitivities!
%sampling_mask: 1 where sampled, zero where not!
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);!
rho = ismrm_transform_kspace_to_image(rho,[1,2]);!
rho = sum(conj(csm) .* rho,3);!

Multiplication with EH	

s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = ismrm_transform_image_to_kspace(s, [1,2]);!
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);!

Multiplication with E	

Let’s first look at a simple Cartesian case	

function o = e_cartesian_SENSE(inp, csm, sp, transpose_indicator)!
% sp: sampling pattern!
% csm: coil sensitivities!

% s: vector of acquired data!
E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr);!
img = lsqr(E, s, 1e-5,50);!
img = reshape(img,size(csm,1),size(csm,2));!

Iterative SENSE could be implemented as:	

If we have the multiplication with E and EH implemented as a Matlab function:	

Iterative SENSE

Cartesian SENSE	
 Iterative SENSE	

Quick note on the non-uniform FFT
To implement multiplication with E and EH in the non-Cartesian case, we need to do
the non-uniform Fourier transform1,2. 	

	

In this course, we will use Jeff Fesslers “nufft” package. We recommend you
download the latest version from: 	

	

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz	

1Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009	

2Fessler J and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. IEEE TSP 2003	

%k: k-space coordinates [Nsamples, 2], range –pi:pi!
%w: Density compensation weights!
%s: Data!
!
%Prepare NUFFT!
N = [256 256]; %Matrix size!
J = [5 5]; %Kernel size!
K = N*2; %Oversampled Matrix size!
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');!
!
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);!

Iterative SENSE – non-Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and EH:	

samples = size(nufft_st.om,1); coils = numel(s)/samples;!
s = reshape(s,samples,coils);!
rho = nufft_adj(s .* repmat(sqrt(w),[1 coils]),nufft_st)./sqrt(prod(nufft_st.Kd));!
rho = sum(conj(csm) .* rho,3);!
rho = rho(:);!

Multiplication with EH	

s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = nufft(s,nufft_st)./sqrt(prod(nufft_st.Kd));!
s = s .*repmat(sqrt(w),[1 size(s,2)]);!
s = s(:);!

Multiplication with E	

Now we have the tools for the non-Cartesian case:	

From nufft_init!
Ensure operators are adjoint	

function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)!
% nufft_st: From nufft_init!
% csm: coil sensitivities, w: density compensation!

% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Non-Cartesian SENSE could be implemented as:	

If we have the multiplication with E and EH implemented as a Matlab function:	

Iterative SENSE – non-Cartesian

Due to definition of E	

Fully sampled	

24 projections	

nufft only	

24 projections	

SENSE	

Regularization - Basics

Adding constraints:

€

xλ = argmin Ax −b 2 + λ L(x − x0) 2{ }

Solution:

€

xλ = x0 + AHA + λ2LHL()−1AH(b −Ax0)

: Linear Transform : Prior Estimate €

x = AHA()−1AHb

An example

€

L =

1
ρ1

1
ρ 2

1
ρN

$

%
%
%
%

&

'

(
(
(
(

€

x = argmin Ax −b 2{ }

€

λ L(x − x0) 2

SENSE, 12 coils
R = 1 R = 2 R = 4 R = 8

Regularization – Iterative Methods

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)

1

Measured data	

Vector of zeros	

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

s

0

�
=

E

L

�
⇢ (8)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. ??. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (9)

1

Equivalent to solving: 	

% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Regularized non-Cartesian SENSE could be implemented as:	

% s: vector of acquired data!
E = @(x,tr) e_reg_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, [s .* repmat(sqrt(w),[size(csm,3),1]);zeros(imgele,1)], 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

ismrm_demo_regularization_iterative_sense.m!

Regularization – Iterative Methods
Unregularized	
 Regularized	

R
ec

on
st

ru
ct

io
n	

SN
R
	

g-maps	

ismrm_demo_regularization_iterative_sense.m!

Regularization – Iterative Methods

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s

�

= FC

�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C

�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

˜⇢ = argmin

⇢
{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)

1

λ=0.1	
 λ=0.5	
 λ=0.8	
 λ=1.0	

λ=1.2	
 λ=1.5	
 λ=2.0	
 λ=5.0	

k-space points can be synthesized from neighbors	

SPIRiT Approach

Lustig and Pauly. Magn Reson Med. 2010 	

Full k-space	

*	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

d (29)

3

=	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

Gd = d (29)

3

SPIRiT Approach

Lustig and Pauly. Magn Reson Med. 2010 	

˜⇢ = S

†
a = Ua (17)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(18)

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (19)

s = E⇢+ ⌘ (20)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(21)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (22)

 = LL

H
(23)

L

�1
Ax = L

�1
b (24)

x =

�
A

H

�1
A

��1
A

H

�1
b (25)

 ! L

�1
(26)

�

2
= 1 (27)

G (28)

Gx = x (29)

˜

x = argmin

x

{kDx� yk2 + � kGx� xk2} (30)

x : Cartesian k-space solution.

D : Sampling operator (e.g. onto non-Cartesian k-space)

y : Sampled data

G : SPIRiT convolution operator

3

We can formulate the reconstruction problem in k-space as:	

Could also be sampling operator from image to k-space	

Can be applied as multiplication in image space	

Spiral Imaging Example

Gridding	
 SENSE	
 SPIRiT	

ismrm_demo_non_cartesian.m!

Summary

§ Noise decorrelation is used to reduce the impact of varying
noise levels in receive channels.

§ SNR scaled reconstruction are a way to evaluate
reconstructions directly on the images.

§ Pseudo Replica Method allows the formation of SNR scaled
images in methods where unmixing coefficients are not
explicitly obtained

§  Iterative methods can be used for both Cartesian and non-
Cartesian methods

§ Regularization can be added to iterative methods in a
straightforward fashion

Acknowledgements

§ Jeff Fessler
• http://web.eecs.umich.edu/~fessler/code/

§ Brian Hargreaves
• http://mrsrl.stanford.edu/~brian/mritools.html

§ Miki Lustig
• http://www.eecs.berkeley.edu/~mlustig/Software.html

Download code, examples:	

http://gadgetron.sf.net/sunrise	

EXERCISES

1. Getting Started

Load exercise data	

load hansen_exercises.mat!
whos!

Reconstruct aliased images 	

-  Observations, noise?	

Do SENSE reconstruction	

-  Calculate SENSE unmixing 	

-  Apply unmixing	

2. Noise

Do SENSE reconstruction	

-  Compare to before prewhitening	

Do noise pre-whitening	

Generate noise covariance matrix	

-  noise_color	

-  Observations, is this a good coil?	

help ismrm_calculate_noise_decorrelation_mtx!
help ismrm_apply_noise_decorrelation_mtx!

3. SNR Scaled Reconstruction

Create SNR image and g-map	

Do SENSE reconstruction	

Analyse FFT to image space. 	

-  Scaling?	

-  How to set the scale factor	

4. Pseudo replica method

Create SNR image and g-map	

Calculate standard deviation of the noise	

Do 100 reps of SENSE recon (just unmixing part)	

5. Non-Cartesian

Reconstruct non-Cartesian SENSE	

Setup encoding matrix anonymous function	

Reconstruct aliased images using nufft	

!
 ismrm_encoding_non_cartesian_SENSE.m!
!

Explore non-Cartesian Demo	

!
 ismrm_demo_non_cartesian.m!
!

