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Image Reconstruction Goal

 Instantaneous results

 Perfect signal fidelity with no artifacts

 No noise

load im1.mat



How far away are we?

Goal

You are here

Artifacts

• Image shading

• Aliasing energy

Noise

• G-factor maps

• Noise amplification maps

• SNR-scaled reconstruction

Efficiency

• Computation operations

• Computation time

• Memory usage



Concept of Sensitivity Encoding



coil sensitivity

magnetization

data 

gradient induced phase

Data Encoding Matrix Magnetization

𝑘𝑥 , 𝑘𝑦

𝑥, 𝑦

Channel 1

Channel 2 𝑘𝑥 , 𝑘𝑦

𝑥, 𝑦

Encoding Model

𝑑𝑗 𝑘𝑥 , 𝑘𝑦 = 𝑠𝑗(𝑥, 𝑦)𝑒
𝑖2𝜋 𝑘𝑥𝑥+𝑘𝑦𝑦 𝑚(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

𝑑 = 𝐸𝑚 + noise



Reconstruction

DataReconstructed 
Magnetization

Reconstruction Matrix

 𝑚 = 𝑅𝑑

 𝑚 = 𝐸𝐻𝐸 −1𝐸𝐻𝑑



Reconstruction Matrix Design

 𝑚 𝑅 𝐸 𝑚

Linear combination of acquired encoding 

functions to give desired encoding function



Reconstruction Components

1. Estimate 𝐸

• 𝑠𝑗(𝑥, 𝑦) Estimate coil sensitivities

2. Generate 𝑅

• One possibility: R = pinv(𝐸)

3. Apply 𝑅

•  𝑚 = 𝑅𝑑



Reconstruction Components
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Image Quality

Reconstruction

Efficiency



Reconstruction Components: Noniterative Methods

1. Estimate 𝐸

• 𝑠𝑗(𝑥, 𝑦) Estimate coil sensitivities

2. Generate 𝑅

• One possibility: R = pinv(𝐸)

3. Apply 𝑅

•  𝑚 = 𝑅𝑑

Calibration



Reconstruction Components: Iterative Methods

1. Estimate 𝐸

• 𝑠𝑗(𝑥, 𝑦) Estimate coil sensitivities

2. Generate 𝑅

• One possibility: R = pinv(𝐸)

3. Apply 𝑅

•  𝑚 = 𝑅𝑑

Calibration

Fused in 

iterative loop



1. Estimate 𝐸

• 𝑠𝑗(𝑥, 𝑦) Estimate coil 

sensitivities

2. Generate 𝑅

• One possibility: R =
pinv(𝐸)

“unfolding matrix”



3. Apply 𝑅

•  𝑚 = 𝑅𝑑
FT

FT

FT

FT

𝑅 =

𝑁𝑐 Fourier Transforms + 𝑁𝑐 multiplications per voxel

mag

phase “unmixing

images”



Local k-Space Kernels

 Enable non-iterative reconstruction of non-uniform sampling 
patterns.

SMASH

GRAPPA

PARS

AUTO-SMASH

VD-AUTO-SMASH

…and more



Composite Channel Local k-Space Kernels

FT𝑅 =

SMASH, AUTO-SMASH, VD-AUTO-SMASH,…

Apply kernels

1 Fourier Transform + 

𝑁𝑐 × 𝑁kernel multiplications per missing sample



Channel-by-channel k-Space Kernels

FT

FT

FT

FT

𝑅 =

𝑁kernel𝑁𝑐
2 multiplications per missing sample +

𝑁𝑐 Fourier Transforms + 

𝑁𝑐 multiplications per voxel

GRAPPA, PARS…



Mixing Reconstruction Components

Generate R Apply R



MRI Toolbox

 Uniform sampling with image space synthesis

• calculate_sense_unmixing(…)

• calculate_grappa_unmixing(…)

• calculate_jer_unmixing(…)

FT

FT

FT

FT

𝑅 =

SENSE

unmixing

GRAPPA

unmixing



Application of local k-space kernels

Property k-space (x, ky, kz)-space image space

Merge with channel 

combination

Hard Hard Easy

Non-uniform 

Cartesian sampling

Yes Yes No

Apply during data 

acquisition

Yes Yes No

Cost to transform 

kernels

None Minimal Moderate

Memory needed to 

store coefficients

WxWyWzNcNc

120KB*

NxWyWzNcNc

6MB*

NxNyNzNc

1GB*

Application 

computation

WxWyWzNcNc per 

missing sample

WyWzNcNc per 

missing sample

Nc per voxel

* Example based on 5x7x7 kernel for 256x256x256 image with 8 

channels



Image Quality

- =

Shading?

Aliasing?

Noise?



Image Shading

 Affects all multi-channel imaging 
(accelerated or not)

 Correction requires an absolute 
sensitivity reference to convert from 
relative coil sensitivities to absolute
coil sensitivities.

• e.g. calibration with uniformly sensitive 
reference coil or using uniform signal 
phantom/sequence.



Common Shading for Relative Coil Sensitivities

 Compare reconstruction methods without absolute reference

 Target profile:  𝑗=1
𝑁𝑐 𝑠𝑗(𝑥, 𝑦)

2

 Same shading profile as a square-root sum-of-squares 
reconstruction.

 Take any relative channel combination maps, 𝑐𝑗(𝑥, 𝑦) and 

apply the following correction:

 𝑐𝑗 𝑥, 𝑦 =
𝑐𝑗(𝑥, 𝑦)

 𝑗′=1
𝑁𝑐 𝑐𝑗′(𝑥, 𝑦)

2



Image Quality

- =

Shading?

Aliasing?

Noise?



Aliasing Energy

pixel mask acceleration = 4

test signals

Signal spread

aliasing energy



Coil Sensitivity Estimation



Coil Sensitivity Estimation

true csm

McKenzie est. csm



Local Kernel Calibration

“Data Driven” 𝑤 = 𝐷𝑠
𝐻𝐷𝑠

−1𝐷𝑠
𝐻𝑑𝑡

“Model Driven” 𝑤 = 𝐸𝑠
𝐻𝐸𝑠

−1𝐸𝑠
𝐻𝑒𝑡



Joint Encoding Relations

𝑒1, 𝑒2



Joint Encoding Relations – Lookup Table

Encoding location 𝑗, 𝑘𝑥 , 𝑘𝑦Encoding 

location 

𝑗, 𝑘𝑥 , 𝑘𝑦



Joint Encoding Relations & Toolbox

 Image space GRAPPA

• ismrm_compute_jer_data_driven(…)

• ismrm_calculate_jer_unmixing(…)

 Image space PARS

• ismrm_compute_jer_model_driven(…)

• ismrm_calculate_jer_unmixing(…)



Tychonov Regularization

1

eigenvalue

1

λ+eigenvalue



|diff|

gmap

al. En.

SENSE

true csm

SENSE

true csm

reg.

SENSE

est csm

SENSE

est csm

reg.

GRAPPA GRAPPA

reg.

im



Minimal Calibration Data

 In some cases, collecting 32(+) lines of k-space for 
calibration is not feasible, or drastically reduces net 
acceleration. e.g. PROPELLER

 Challenging to estimate sensitivity maps:

• Cal data is a low resolution image of the magnetization-weighted 

sensitivities: 𝑚 𝑟 𝑠𝑗 𝑟 ∗psf(𝑟)

• Even if sensitivities are low resolution, separating the sensitivity 
function is an approximation that cal lead to aliasing artifacts.

𝑚 𝑟 ∗ psf(𝑟) 𝑠𝑗 𝑟



|diff|

gmap

al. En.

SENSE

true csm

SENSE

est csm

PARS

est csm

filter

PARS

est csm

no filter
GRAPPA

im



Reduced FOV case

 ismrm_demo_rFOV.m

 Low resolution unaliasing kernels; coil sensitivities with discontinuities

 Calibration approach impacts image quality



Summary

 Divide reconstruction components into separate 
components

• Calibration approach impacts image quality

• Data synthesis approach impacts reconstruction efficiency

• Mix and match components to get desired behavior

 Tradeoffs between efficiency, artifacts and noise

• Match operating point to target application

 Use tools to help separate shading, aliasing and noise 
degredation


