Image Reconstruction – Parallel Imaging Part I

Philip J. Beatty, PhD

Sunnybrook Research Institute, Toronto, Canada Department of Medical Biophysics, University of Toronto, Toronto, Canada

No conflicts of interest to disclose

Image Reconstruction Goal

- Instantaneous results
- Perfect signal fidelity with no artifacts
- No noise

load iml.mat

How far away are we?

Artifacts

- Image shading
- Aliasing energy

Noise

- G-factor maps
- Noise amplification maps
- SNR-scaled reconstruction

Concept of Sensitivity Encoding

Encoding Model

d = Em + noise

Reconstruction

Reconstruction Matrix Design

Linear combination of acquired encoding functions to give desired encoding function

Reconstruction Components

- 1. Estimate *E*
 - $s_j(x, y)$ Estimate coil sensitivities
- 2. Generate R
 - One possibility: R = pinv(E)
- 3. Apply *R*
 - $\widehat{m} = Rd$

Reconstruction Components

- 1. Estimate E
 - $s_j(x, y)$ Estimate coil sensitivities
- 2. Generate R
 - One possibility: R = pinv(E)
- 3. Apply R
 - $\widehat{m} = Rd$

Image Quality
Reconstruction
Efficiency

Reconstruction Components: Noniterative Methods

- 1. Estimate *E*
 - $s_j(x, y)$ Estimate coil sensitivities
- 2. Generate R
 - One possibility: R = pinv(E)

Calibration

- 3. Apply *R*
 - $\widehat{m} = Rd$

Reconstruction Components: Iterative Methods

Magnetic Resonance in Medicine 42:952-962 (1999)

SENSE: Sensitivity Encoding for Fast MRI

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger*

- 1. Estimate E
 - $s_j(x, y)$ Estimate coil sensitivities

- 2. Generate R
 - One possibility: R = pinv(*E*)

"unfolding matrix" $U = (S^{H}\Psi^{-1}S)^{-1}S^{H}\Psi^{-1},$

Magnetic Resonance in Medicine 42:952-962 (1999)

SENSE: Sensitivity Encoding for Fast MRI

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger*

 N_c Fourier Transforms + N_c multiplications per voxel

Local k-Space Kernels

 Enable non-iterative reconstruction of non-uniform sampling patterns.

SMASH PARS **AUTO-SMASH** VD-AUTO-SMASH GRAPPA ...and more

Composite Channel Local k-Space Kernels

SMASH, AUTO-SMASH, VD-AUTO-SMASH,...

$$R = \begin{bmatrix} FT \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf$$

1 Fourier Transform + $N_c \times N_{\text{kernel}}$ multiplications per missing sample

Channel-by-channel k-Space Kernels

 $N_{\text{kernel}}N_c^2$ multiplications per missing sample + N_c Fourier Transforms + N_c multiplications per voxel

Mixing Reconstruction Components

Magnetic Resonance in Medicine 59:382-395 (2008)

Comparison of Reconstruction Accuracy and Efficiency Among Autocalibrating Data-Driven Parallel Imaging Methods

MRI Toolbox

Uniform sampling with image space synthesis

- calculate_sense_unmixing(...)
- calculate_grappa_unmixing(...)
- calculate_jer_unmixing(...)

Application of local k-space kernels

Property	k-space	(x, ky, kz)-space	image space
Merge with channel combination	Hard	Hard	Easy
Non-uniform Cartesian sampling	Yes	Yes	No
Apply during data acquisition	Yes	Yes	No
Cost to transform kernels	None	Minimal	Moderate
Memory needed to store coefficients	W _x W _y W _z N _c N _c 120KB*	N _x W _y W _z N _c N _c 6MB*	N _x N _y N _z N _c 1GB*
Application computation	W _x W _y W _z N _c N _c per missing sample	W _y W _z N _c N _c per missing sample	N _c per voxel

* Example based on 5x7x7 kernel for 256x256x256 image with 8 channels

Image Quality

Shading? Aliasing? Noise?

Image Shading

 Affects all multi-channel imaging (accelerated or not)

- Correction requires an absolute sensitivity reference to convert from *relative* coil sensitivities to *absolute* coil sensitivities.
 - e.g. calibration with uniformly sensitive reference coil or using uniform signal phantom/sequence.

Common Shading for Relative Coil Sensitivities

Compare reconstruction methods without absolute reference

• Target profile:
$$\sqrt{\sum_{j=1}^{Nc} |s_j(x, y)|^2}$$

- Same shading profile as a square-root sum-of-squares reconstruction.
- Take any relative channel combination maps, $c_j(x, y)$ and apply the following correction:

$$\hat{c}_{j}(x,y) = \frac{c_{j}(x,y)}{\sqrt{\sum_{j'=1}^{Nc} |c_{j'}(x,y)|^{2}}}$$

Image Quality

Shading? Aliasing? Noise?

Aliasing Energy

Signal spread

 $\sqrt{aliasing}$ energy

Magnetic Resonance in Medicine 43:682-690 (2000)

Adaptive Reconstruction of Phased Array MR Imagery

David O. Walsh,¹ Arthur F. Gmitro,^{2*} and Michael W. Marcellin³

Magnetic Resonance in Medicine 47:529–538 (2002) DOI 10.1002/mrm.10087

Self-Calibrating Parallel Imaging With Automatic Coil Sensitivity Extraction

Charles A. McKenzie,^{1*} Ernest N. Yeh,² Michael A. Ohliger,² Mark D. Price,² and Daniel K. Sodickson^{1,2}

Coil Sensitivity Estimation

Local Kernel Calibration

Magnetic Resonance in Medicine 47:1202-1210 (2002)

Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)

Mark A. Griswold,^{1*} Peter M. Jakob,¹ Robin M. Heidemann,¹ Mathias Nittka,² Vladimir Jellus,² Jianmin Wang,² Berthold Kiefer,² and Axel Haase¹

"Data Driven" $w = (D_s^H D_s)^{-1} D_s^H d_t$

Magnetic Resonance in Medicine 53:1383-1392 (2005)

3Parallel Magnetic Resonance Imaging with Adaptive Radius in *k*-Space (PARS): Constrained Image Reconstruction using *k*-Space Locality in Radiofrequency Coil Encoded Data

Ernest N. Yeh,^{1,2} Charles A. McKenzie,² Michael A. Ohliger,^{1,2} and Daniel K. Sodickson^{1,2,3}*

"Model Driven" $w = (E_s^H E_s)^{-1} E_s^H e_t$

Joint Encoding Relations

A Method for Autocalibrating 2-D Accelerated Volumetric Parallel Imaging with Clinically Practical Reconstruction Times

P. J. Beatty¹, A. C. Brau¹, S. Chang², S. M. Joshi², C. R. Michelich², E. Bayram², T. E. Nelson³, R. J. Herfkens³, and J. H. Brittain⁴

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007)

1749

 $\langle e_1, e_2 \rangle$

Joint Encoding Relations – Lookup Table

Joint Encoding Relations & Toolbox

- Image space GRAPPA
 - ismrm_compute_jer_data_driven(...)
 - ismrm_calculate_jer_unmixing(...)
- Image space PARS
 - ismrm_compute_jer_model_driven(...)
 - ismrm_calculate_jer_unmixing(...)

Tychonov Regularization

- In some cases, collecting 32(+) lines of k-space for calibration is not feasible, or drastically reduces net acceleration. e.g. PROPELLER
- Challenging to estimate sensitivity maps:
 - Cal data is a low resolution image of the magnetization-weighted sensitivities: $[m(r)s_j(r)]*psf(r)$
 - Even if sensitivities are low resolution, separating the sensitivity function is an approximation that callead to aliasing artifacts. $[m(r) * psf(r)]s_j(r)$

Reduced FOV case

- ismrm_demo_rFOV.m
- Low resolution unaliasing kernels; coil sensitivities with discontinuities
- Calibration approach impacts image quality

Summary

- Divide reconstruction components into separate components
 - Calibration approach impacts image quality
 - Data synthesis approach impacts reconstruction efficiency
 - Mix and match components to get desired behavior
- Tradeoffs between efficiency, artifacts and noise
 - Match operating point to target application
- Use tools to help separate shading, aliasing and noise degredation