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Outline 

§ What is a reconstruction pipeline 

§ Common pipeline elements: 

• Noise adjust, filtering, accumulation, FFT 

§ A Simple Reconstruction Pipeline Example 

• Cartesian Parallel Imaging 

§ Examples of pipeline architectures 

• Open Source 

• Vendors 



PART 1 



The role of the image reconstruction process 





















   

 







Reconstruction Pseudo Code 

function reconstruct(datafile):!

   (data,headers) = read_data(data_file)!

   data = prewhiten(data)!

   calibration = calibrate(data)!

   images = ifft(data)!

   images = coil_combine(images, calibration) !



Problems with the reconstruct function 

§ Reconstruction does not start until all data is stored 

§ Parallelization requires low level management 

§ Changes to reconstruction software requires editing of 
source code function (and recompilation of code) 

§ Encourages bad programming practices: 

• Poorly defined data structures (interfaces) 

• Duplication of code 



A modular pipeline 

Module 
config 

head,data head,data 

state 

code 



§ Modular reconstruction design 

§ Well defined interfaces and data structures 

§ Processing can start when first readout is acquired 

§ Modules can be exchanged (without recompiling) 

§ Parallelization is inherent if modules run independently 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

data images 

prewhiten	
 correction	
 ifft	
 combine	
 filter	


A modular pipeline 

header 
readout 
meta 

header 
image 
meta 
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Siemens Reconstruction Pipeline 
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MR8ICE – ICE Overview
Page 3

Version 3.1                                         Confidential
All rights reserved

ICE

ICE is the image processing environment used on the Magnetom to 
measure and analyze data. It executes primarily on the MARS, operating 
with an Ubuntu Linux operating system.

The Ice Program is specified by the pulse sequence and starts 
simultaneously with the sequence.

ICE can also run on a standalone Windows 7 computer.
It executes also on the Host (Windows 7) for offline PostProcessing jobs.
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MR8ICE – ICE Overview
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Image Reconstruction Pipeline

RAID

up to 500 GB

r/w: 210 MB/s sustained

needs only max. 5% of 1 CPU

Feedback d 10 ms

DB

Sequence

Data + MDH
RX

 

up to 12 x 
parallel Scanning 
and ImageRecon

MARS (MrIrisContainer)

HostMARS (SeqControlTask)

Im
ag

es

up to 
96 GB 
RAM

MR SCANNER – ICE PERSPECTIVE
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Functor 

•  Modules are called 
functors. 

•  Data structures are 
well defined on 
interfaces. 

•  Modules are 
interchangeable. 

•  Configured at run time. 
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Functor Chain 

The user interfaces with the underlying framework through specification of a file 
known as the Ice program. This program specifies the functor chain of operations 
and configuration parameters, based upon the type of pulse sequence and the 
desired data output (integer images, complex raw data).  
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The Basics of a Reconstruction Application     

Data Sorting and Organization 

•  Meaningful data structure based on application or desired 
processing 

•  Raw acquisition data can be: scanner, raw files, data streams 

Processing Pipeline 

•  Group of Processing Sections: Modules that typically “do math” and have 
custom inputs/output 

•  The pipeline builds and wires the Sections in stages that define the 
processing flow 

•  Pipeline building defines: 
–  Processing order 
–  Section dependencies 
–  Distribution of processing 
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Example 
  

Processing Flow 

Acquisition 
/Sorting 

Stage 1 

Section A 
Processing 

Outputs 
(Images) 

Processing Pipeline 

Stage 2 

Section B 

Section C 

Stage 3 

Section D 
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Programming Window: The Orchestra SDK     

Collection of modular and reusable product recon 
algorithms 

•  MATLAB functions 
•  C++ classes and functions Raw file readers 

•  APIs for accessing data and 
parameters 

GE example pipelines 
•  Cartesian, EPI, 
Spectroscopy Multi-Platform 

•  Linux, Mac, 
Windows 

DICOM Toolbox 
•  Create, read, and write compliant 
files 
•  Store/stream images to networked 
peers 



Data	  Stream	  
RAW MR Signal 

Preprocessing 

RAW Data: Samples (Complex Floating Point) 

FFT 

CPX Data: Image (Complex Floating Point) 

Image Production & Scaling 

REC Data: Image (Integer 8,12 bit) 

Rescaling  

Display Grey Levels (after Windowing) 

Measurement 

Reconstruction 

Viewing 



Introduction to Recon 2.0 
Nodes, Reconstruction Graph 

RAW Data 

Correction for Hardware Imperfections 

Gridding (For EPI e.t.c) 

X-FFT , Z-FFT, Y-FFT 

Sense Unfolding 

Complex Geometry Corrections 

Scaling Images 

Reconstruction is a sequence of steps for 
transforming data received from the previous step 
and passing it onto the next step. 

Nodes The individual steps performed in the 
reconstruction pipeline are referred to as Nodes. 

Reconstruction Graph The pipeline connecting the 
nodes to each other is called as the reconstruction 
graph. 

•  ready-to-use platform for complete MR image reconstruction 
•  raw data processed via independent, easy to adapt processing modules called “nodes” 
	  



Introduction to Recon 2.0 
Framework Architecture 

S P

DataObject 

Node 

DataObject 

S PNode 

DataObject 

Protocol 
Definit ion 

Script 

P r o t o c o l  
P a r a m e t e r s  

Node Parameters Node Parameters 

S	   Socket	  

P	   Plug	  

Raw 
Data Labels +	  

DataObject 

Array Dicti-
onary +	  

DataObject 



Summary 

§ Modern reconstruction software is often implemented as 
streaming pipeline architectures 

• Modularity 

• Performance 

§ Modules have well defined data interfaces and are 
interchangeable to some extend 

§ Modules can often be assembled at run-time to form 
different recon programs (without recompilation) 



What to expect in Part 2 

§ We will play with a simple recon pipeline: 
• Built in Python 
• Basic Parallel Imaging reconstruction 

§ Open Raw Data Standard 
•  ISMRMRD 

§ Open Source Pipeline Environments 
• Gadgetron 
• GPI 
• Codeare 
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PART 2 



The role of the image reconstruction process 



A modular pipeline 

Module 
config 

head,data head,data 

state 

code 



§ Modular reconstruction design 

§ Well defined interfaces and data structures 

§ Processing can start when first readout is acquired 

§ Modules can be exchanged (without recompiling) 

§ Parallelization is inherent if modules run independently 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

Module 
state 

code 

data images 

prewhiten	
 correction	
 ifft	
 combine	
 filter	


A modular pipeline 



Implement 2D Cartesian Parallel Imaging 

SENSE: Sensitivity Encoding for Fast MRI

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger*

New theoretical and practical concepts are presented for consid-
erably enhancing the performance of magnetic resonance imag-
ing (MRI) by means of arrays of multiple receiver coils. Sensitiv-
ity encoding (SENSE) is based on the fact that receiver sensitivity
generally has an encoding effect complementary to Fourier
preparation by linear field gradients. Thus, by using multiple
receiver coils in parallel scan time in Fourier imaging can be
considerably reduced. The problem of image reconstruction
from sensitivity encoded data is formulated in a general fashion
and solved for arbitrary coil configurations and k-space sam-
pling patterns. Special attention is given to the currently most
practical case, namely, sampling a common Cartesian grid with
reduced density. For this case the feasibility of the proposed
methods was verified both in vitro and in vivo. Scan time was
reduced to one-half using a two-coil array in brain imaging. With
an array of five coils double-oblique heart images were obtained
in one-third of conventional scan time. Magn Reson Med
42:952–962, 1999. ! 1999 Wiley-Liss, Inc.
Key words: MRI; sensitivity encoding; SENSE; fast imaging;
receiver coil array

Among today’s many medical imaging techniques, MRI
stands out by a rarely stated peculiarity: the size of the
details resolved with MRI is much smaller than the wave-
length of the radiation involved. The reason for this
surprising ability is that the origin of a resonance signal is
not determined by optical means such as focusing or
collimation but by spectral analysis. The idea of Lauterbur
(1) to encode object contrast in the resonance spectrum by a
magnetic field gradient forms the exclusive basis of signal
localization in Fourier imaging. However powerful, the
gradient-encoding concept implies a fundamental restric-
tion. Only one position in k-space can be sampled at a time,
making k-space speed the crucial determinant of scan time.
Accordingly, gradient performance has been greatly en-
hanced in the past, reducing minimum scan time drasti-
cally with respect to earlier stages of the technique. How-
ever, due to both physiological and technical concerns,
inherent limits of k-space speed have almost been reached.

An entirely different approach to sub-wavelength resolu-
tion in MRI is based on the fact that with a receiver placed
near the object the contribution of a signal source to the
induced voltage varies appreciably with its relative posi-
tion. That is, knowledge of spatial receiver sensitivity
implies information about the origin of detected MR sig-
nals, which may be utilized for image generation. Unlike
position in k-space, sensitivity is a receiver property and
does not refer to the state of the object under examination.

Therefore, samples of distinct information content can be
obtained at one time by using distinct receivers in parallel
(2), implying the possibility of reducing scan time in
Fourier imaging without having to travel faster in k-space.

In 1988 Hutchinson and Raff (3) suggested dispensing
entirely with phase encoding steps in Fourier imaging by
using a very large number of receivers. Kwiat et al. (4)
proposed a similar concept in 1991. In 1989 Kelton et al. (5)
suggested staying with phase encoding, yet reducing the
number of phase encoding steps by a power of 2 using a
corresponding number of receivers. In Kelton et al. (5), as
in all later concepts, phase encoding is reduced by increas-
ing the distance of readout lines in k-space such that the
sampled area remains unchanged. The Kelton approach
was modified by Ra et al. (6) in 1991, allowing the number
of coils to be any integer, yet still equal to the factor of scan
time reduction.

In all contributions procedures for image reconstruction
were derived. However, applications of the concepts noted
have not been reported, reflecting the considerable practi-
cal challenges of sensitivity based imaging, including the
signal-to-noise ratio (SNR) issue, sensitivity assessment,
and hardware requirements. Only in 1997 did Sodickson et
al. (7) report the first successful experiments using parallel
receivers for the purpose of scan time reduction, introduc-
ing the SMASH method (SiMultaneous Acquisition of
Spatial Harmonics). For image reconstruction SMASH
relies on the ability to approximate low-order harmonics of
the desired field of view (FOV) by linear combination of
sensitivity functions. The technique is therefore restricted
to appropriate combinations of coil arrangement, slice
geometry, and reduction factor.

To overcome the restrictions of previously proposed
methods, in this work we reformulate the problem of image
reconstruction from multiple receiver data. Using the
framework of linear algebra, two different reconstruction
strategies have been derived. In their general forms the
resulting formulae hold for arbitrary sampling patterns in
k-space. A detailed discussion is dedicated to the most
practical case, namely, sampling along a Cartesian grid in
k-space corresponding to standard Fourier imaging with
reduced FOV.

Owing to the underlying principle, the concepts out-
lined in this work have been named SENSE, short for
SENSitivity Encoding (8–10). Together with SENSE theory
and methods, a detailed SNR analysis is presented as well
as an experimental in vitro evaluation and a selection of in
vivo examples.

THEORY AND METHODS
In this section SENSE theory is presented and methods for
image reconstruction from sensitivity encoded data are
derived. The theory addresses the most general case of
combining gradient and sensitivity encoding. That is, no
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Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA)
Mark A. Griswold,1* Peter M. Jakob,1 Robin M. Heidemann,1 Mathias Nittka,2

Vladimir Jellus,2 Jianmin Wang,2 Berthold Kiefer,2 and Axel Haase1

In this study, a novel partially parallel acquisition (PPA) method
is presented which can be used to accelerate image acquisition
using an RF coil array for spatial encoding. This technique,
GeneRalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) is an extension of both the PILS and VD-AUTO-
SMASH reconstruction techniques. As in those previous meth-
ods, a detailed, highly accurate RF field map is not needed prior
to reconstruction in GRAPPA. This information is obtained from
several k-space lines which are acquired in addition to the
normal image acquisition. As in PILS, the GRAPPA reconstruc-
tion algorithm provides unaliased images from each compo-
nent coil prior to image combination. This results in even higher
SNR and better image quality since the steps of image recon-
struction and image combination are performed in separate
steps. After introducing the GRAPPA technique, primary focus
is given to issues related to the practical implementation of
GRAPPA, including the reconstruction algorithm as well as anal-
ysis of SNR in the resulting images. Finally, in vivo GRAPPA im-
ages are shown which demonstrate the utility of the technique.
Magn Reson Med 47:1202–1210, 2002. © 2002 Wiley-Liss, Inc.
Key words: parallel imaging; rapid MRI; RF coil arrays; SMASH;
SENSE; PILS

Since the development of the NMR phased array (1) in the
late 1980s, multicoil arrays have been designed to image
almost every part of the human anatomy. These multicoil
arrays are primarily used for their increased signal-to-noise
ratio (SNR) compared to volume coils or large surface coils.

Recently, several partially parallel acquisition (PPA)
strategies have been proposed (2–19) which have the po-
tential to revolutionize the field of fast MR imaging. These
techniques use spatial information contained in the com-
ponent coils of an array to partially replace spatial encod-
ing which would normally be performed using gradients,
thereby reducing imaging time. In a typical PPA acquisi-
tion, only a fraction of the phase encoding lines are ac-
quired compared to the conventional acquisition. A spe-
cialized reconstruction is then applied to the data to re-
construct the missing information, resulting in the full
FOV image in a fraction of the time.

The primary limiting factor of the majority of PPA tech-
niques is their requirement of accurate knowledge of the
complex sensitivities of component coils. In practice, the

actual coil sensitivity information is difficult to determine
experimentally due to contamination by, for example,
noise. Additionally, subject or coil motion between the
time of coil calibration and image acquisition can be prob-
lematic if this information is not taken into account during
the reconstruction.

Last year, we presented the parallel imaging with local-
ized sensitivities (PILS) technique (14) and demonstrated
several advantages. In PILS it is assumed that each com-
ponent coil has a localized sensitivity profile. Whenever
this is true, uncombined coil images can be formed for
each component coil using only knowledge of the position
of the coil in the FOV, which can be obtained trivially
using a number of methods (14). Besides providing an
efficient reconstruction process (14,20), PILS was shown
to provide optimal SNR for all accelerations tested, since
the uncombined coil images can be combined using a sum
of squares or other optimal array reconstruction method.

The PILS technique represents a departure in recon-
struction philosophy compared to other previous PPA
methods. In all previous methods the steps of image re-
construction (unaliasing) and SNR optimization (image
combination) occur in one step. Therefore, both processes
had to be simultaneously optimized for a good reconstruc-
tion. On the other hand, the process of unaliasing and SNR
optimization are completely decoupled in PILS, so that
both can potentially be optimized separately. We believe
that this general philosophy could lead to more robust and
optimized PPA reconstructions. However, in order to de-
couple these processes uncombined images need to be
formed by the PPA reconstruction technique. To date, no
such method other than PILS exists.

In this study, we describe the first extension of this basic
philosophy which is applicable to coils which are not
necessarily spatially localized. In this technique, Gene-
Ralized Autocalibrating Partially Parallel Acquisitions
(GRAPPA), a more generalized view of the variable density
AUTO-SMASH (VD-AUTO-SMASH) technique (15), is
used to generate uncombined coil images from each coil in
the array. It is shown that this reconstruction process
results in images in higher SNR and better overall image
quality compared to previous VD-AUTO-SMASH imple-
mentations. After introduction of the reconstruction
method, computer simulations will be presented which
highlight the benefits of the GRAPPA reconstruction. Fi-
nally, the first in vivo results using an eight-channel re-
ceiver system and the GRAPPA reconstruction are shown.

THEORY
Review of AUTO-SMASH and VD-AUTO-SMASH

In order to understand the GRAPPA process, it is instruc-
tive to review the basics of both the AUTO-SMASH (11)

1Julius-Maximilians Universität Würzburg, Physikalisches Institut, Würzburg,
Germany.
2Siemens Medical Solutions, Erlangen, Germany.
*Correspondence to: Mark Griswold, Department of Physics, University of
Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: mark@physik.
uni-wuerzburg.de
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2002.
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Cartesian Parallel Imaging - Ingredients 

1.  Data  

2.  Software 

Details and code: http://hansenms.github.io/sunrise	




ISMRM Raw Data Format 




<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ismrmrdHeader xmlns="http://www.ismrm.org/ISMRMRD" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xsi:schemaLocation="http://www.ismrm.org/ISMRMRD ismrmrd.xsd">

  <encoding>
    <encodedSpace>
      <matrixSize>
        <x>512</x><y>256</y><z>1</z>
      </matrixSize>
      <fieldOfView_mm>
        <x>600</x><y>300</y><z>6</z>
      </fieldOfView_mm>
    </encodedSpace>
    <reconSpace>
      <matrixSize>
        <x>256</x><y>256</y><z>1</z>
      </matrixSize>
      <fieldOfView_mm>
        <x>300</x><y>300</y><z>6</z>
      </fieldOfView_mm>
    </reconSpace>
    <encodingLimits>
      <kspace_encoding_step_1>
        <minimum>0</minimum>
        <maximum>255</maximum>
        <center>128</center>
      </kspace_encoding_step_1>
      <repetition>
        <minimum>0</minimum>
        <maximum>1</maximum>
        <center>0</center>
      </repetition>
    </encodingLimits>
    <trajectory>cartesian</trajectory>
  </encoding>

</ismrmrdHeader>


 

http://ismrmrd.github.io	




ISMRM Raw Data Format 

Info on converters: michael.hansen@nih.gov	




Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 

Noise	

Prewhitening	


Remove	

Oversampling	


PCA	

Compression	


Remove	

Coils	


Recon	

FFT/Combine	


RAW DATA	

ISMRMRD	


IMAGES	


OPTIONAL	




Pipeline Module (aka Gadget, Node, Functor, etc.) 

class Module/Gadget/Functor:	

	
•  state (member variables, buffers, etc.)	

•  next module	

•  process_config(conf)	


•  sets up the module	

•  uses general header information	


•  process(head, data, meta)	

•  processes actual data	

•  operates on one data element at a time	


	


Loop counter information	

Timing information	


Sampled data	

Image data	


OPTIONAL	

Data labels	

Image labels	

Calculated timing	

Scaling information	

Etc.	




Some example Python code 

def define_gadget_chain():!
    g2 = Recon()!
    g1 = RemOS(next_gadget=g2)!
    g0 = CoilReduce(next_gadget=g1)!
    gb = PCA(next_gadget=g0)!
    ga = NoiseAdj(next_gadget=gb)    !
    return ga!
!
g_python = define_gadget_chain()!
!

dset = ismrmrd.Dataset(filename, 'dataset', create_if_needed=False)!
!
!
# Send in data!
#First ISMRMRD XML header!
gadget_chain_config(g_python,dset.read_xml_header())!
!
# Loop through the rest of the acquisitions and stuff!
for acqnum in range(0,dset.number_of_acquisitions()):!
    acq = dset.read_acquisition(acqnum)!
    g_python.process(acq.getHead(),acq.data.astype('complex64'))!
!
# Wait for recon to finish!
gadget_chain_wait(g_python)!

import ismrmrd!
import ismrmrd.xsd!
from gadgetron import gadget_chain_wait!
from gadgetron import gadget_chain_config!
from tpat_snr_scale import RemOS, NoiseAdj, PCA, CoilReduce, Recon!

SET UP MODULES	


OPEN DATASET	


RECONSTRUCT	




Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 

Noise	

Prewhitening	


Remove	

Oversampling	


PCA	

Compression	


Remove	

Coils	


Recon	

FFT/Combine	


RAW DATA	

ISMRMRD	


IMAGES	


OPTIONAL	




Noise in Parallel Imaging 

g(x1) =
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Basic MRI signal equation with coil sensitivity endowing looks like:

S
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⇢(x) : The imaged object.
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(k) : Signal in receiver coil � at position k in k-space.
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: Fourier encoding.

We can write this as matrix equation:
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s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	


In practice, we are affected by noise	


Noise correlation 

Noise covariance matrix 

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉 

# Python!
% eta: [Ncoils, Nsamples]!
Psi = (1/(M-1))*np.asmatrix(eta)*np.asmatrix(eta).H!

We can measure this noise covariance:	




“Normal Coil”	
 “Broken Coil”	


Psi Examples – 32 Channel Coil 

Examination of the noise covariance matrix is an important QA tool. Reveals broken 
elements, faulty pre-amps, etc. 	




Noise Pre-Whitening 

We would like to apply an operation such that we have unit variance in all 
channels:	




Noise Pre-Whitening 

More generally, we want to weight the equations with the “inverse square 
root” of the noise covariance, if	
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We will solve:	


g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H
 

�1
A

��1
A

H
 

�1
b (22)

3

Or:	


In practice, we simply generate “pre-whitened” input data before recon	




Noise Prewhitening - Python Code 

import numpy as np!
!
def calculate_prewhitening(noise, scale_factor=1.0):!
    '''Calculates the noise prewhitening matrix!
!
    :param noise: Input noise data (array or matrix), ``[coil, nsamples]``!
    :scale_factor: Applied on the noise covariance matrix. Used to !
                   adjust for effective noise bandwith and difference in !
                   sampling rate between noise calibration and actual measurement: !
                   scale_factor = (T_acq_dwell/T_noise_dwell)*NoiseReceiverBandwidthRatio!
                   !
    :returns w: Prewhitening matrix, ``[coil, coil]``, w*data is prewhitened!
    '''!
!
    noise_int = noise.reshape((noise.shape[0],noise.size/noise.shape[0]))!
    M = float(noise_int.shape[1])    !
    dmtx = (1/(M-1))*np.asmatrix(noise_int)*np.asmatrix(noise_int).H    !
    dmtx = np.linalg.inv(np.linalg.cholesky(dmtx));!
    dmtx = dmtx*np.sqrt(2)*np.sqrt(scale_factor);!
    return dmtx!
!
def apply_prewhitening(data,dmtx):!
    '''Apply the noise prewhitening matrix!
!
    :param noise: Input noise data (array or matrix), ``[coil, ...]``!
    :param dmtx: Input noise prewhitening matrix!
    !
    :returns w_data: Prewhitened data, ``[coil, ...]``,!
    '''!
!
    s = data.shape!
    return np.asarray(np.asmatrix(dmtx)*np.asmatrix(data.reshape(data.shape[0],data.size/data.shape[0]))).reshape(s)!
    !



Noise Pre-Whitening – In vivo example 
In vivo stress perfusion case where broken coil element resulted in non-
diagnostic images.	


Without pre-whitening	
 With pre-whitening	


Example provided by Peter Kellman, NIH 	




Noise Adjust Module 

class NoiseAdj(Gadget):!
    def __init__(self, next_gadget = None):!
        Gadget.__init__(self, next_gadget)!
        self.noise_data = list()!
        self.noise_dmtx = None!
    def process(self,acq,data,*args):!
        if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):!
            self.noise_data.append((acq,data))!
        else:!
            if len(self.noise_data):!
                profiles = len(self.noise_data)!
                channels = self.noise_data[0][1].shape[0]!
                samples_per_profile = self.noise_data[0][1].shape[1]!
                noise = np.zeros((channels,profiles*samples_per_profile),dtype=np.complex64)!
                counter = 0!
                for p in self.noise_data:!
                    noise[:,counter*samples_per_profile:(counter*samples_per_profile+samples_per_profile)] = p[1]!
                    counter = counter + 1!
                !
                scale = (acq.sample_time_us/self.noise_data[0][0].sample_time_us)*0.79!
                self.noise_dmtx = coils.calculate_prewhitening(noise,scale_factor=scale)!
                !
                #Test the noise adjust!
                d = self.noise_data[0][1]!
                d2 = coils.apply_prewhitening(d, self.noise_dmtx)                !
                self.noise_data = list()!
            !
            if self.noise_dmtx is not None:!
                data2 = coils.apply_prewhitening(data, self.noise_dmtx)!
            else:!
                data2 = data!
                !
            self.put_next(acq,data2)!
        return 0!
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Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 
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PCA Module 
class PCA(Gadget):!
    def __init__(self, next_gadget=None):!
        Gadget.__init__(self, next_gadget) !
        self.calib_data = list()!
        self.pca_mtx = None!
        self.max_calib_profiles = 100!
        self.samples_to_use = 16!
        self.buffering = True!
        !
    def process(self,acq,data,*args):    !
        if self.buffering:!
            self.calib_data.append((acq,data))!
            !
            if (len(self.calib_data)>=self.max_calib_profiles or acq.isFlagSet(ismrmrd.ACQ_LAST_IN_SLICE)):!
                #We are done buffering calculate pca transformation!
                # ...book keeping code (removed to save space, refer to original code)!
                !
                A = np.zeros((total_samples,channels), dtype=np.complex64)!
                counter = 0!
                for p in self.calib_data:!
                    d = p[1][:, acq.center_sample-(samp_to_use>>1):acq.center_sample+(samp_to_use>>1)]!
                    A[counter*samp_to_use:counter*samp_to_use+samp_to_use,:] = np.transpose(d)!
                    counter = counter+1!
                !
                m = np.mean(A,0)!
                A_m = A - m.reshape((1,m.shape[0]))!
                U, s, V = np.linalg.svd(A_m, full_matrices=False)!
                self.pca_mtx = V!
!

! for p in self.calib_data:!
                    data2 = np.dot(self.pca_mtx,p[1])!
                    self.put_next(p[0],data2)!
     !
                self.buffering = False!
                self.calib_data = list()!
                return 0!
        else:!
            if self.pca_mtx is not None:!
                data2 = np.dot(self.pca_mtx,data)!
                self.put_next(acq,data2,*args)!
            else:!
                self.put_next(acq,data,*args)!
            !
        return 0!
!
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Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 
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class CoilReduce(Gadget):!
    def __init__(self, next_gadget = None):!
        Gadget.__init__(self, next_gadget)!
        self.coils_out = 16!
        !
    def process_config(self, conf):!
        coils_out = self.get_parameter("coils_out")!
        if (coils_out is not None):!
            self.coils_out = int(coils_out)!
!
    def process(self, acq, data, *args):!
        if acq.active_channels > self.coils_out:!
            data2 = data[0:self.coils_out,:]!
            acq.active_channels = self.coils_out!
        else:!
            data2 = data!
            !
        self.put_next(acq,data2,*args)!
        return 0!



Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 
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class RemOS(Gadget):!
    def process_config(self, conf):!
        return!
!
    def process(self, acq, data,*args):!
        if not acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):!
            ro_length = acq.number_of_samples!
            padded_ro_length = (acq.number_of_samples-acq.center_sample)*2!
            if padded_ro_length != ro_length: #partial fourier!
                data2 = np.zeros((data.shape[0], padded_ro_length),dtype=np.complex64)!
                offset = (padded_ro_length>>1)  - acq.center_sample!
                data2[:,0+offset:offset+ro_length] = data!
            else:!
                data2 = data!
    !
            data2=transform.transform_kspace_to_image(data2,dim=(1,))!
            data2=data2[:,(padded_ro_length>>2):(padded_ro_length>>2)+(padded_ro_length>>1)]!
            data2=transform.transform_image_to_kspace(data2,dim=(1,)) * np.sqrt(float(padded_ro_length)/ro_length)!
            acq.center_sample = padded_ro_length>>2!
            acq.number_of_samples = data2.shape[1]!
            self.put_next(acq,data2,*args)!
        return 0                                                                                     !



Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA 
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SENSE – Image Synthesis with Unmixing 
Coefficients 

Aliased coil images	
 Unmixing Coefficients	


.* 	




SENSE – Simple Rate 4 Example 

F : Image formation matrix

L : Linear transform
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Recon Module 
class Recon(Gadget):!
    def __init__(self, next_gadget=None):!
        Gadget.__init__(self, next_gadget) !
        self.header = None!
        self.enc = None!
        self.acc_factor = None!
        self.buffer = None!
        self.samp_mask = None!
        self.header_proto = None!
        self.calib_buffer = list()!
        self.unmix = None!
        self.gmap = None!
        self.calib_frames = 0!
        self.method = 'grappa'!
    !
    def process_config(self, cfg):!
        self.header = ismrmrd.xsd.CreateFromDocument(cfg)!
        self.enc = self.header.encoding[0]!
!
        #Parallel imaging factor!
        self.acc_factor = self.enc.parallelImaging.accelerationFactor.kspace_encoding_step_1!
        !
        reps = self.enc.encodingLimits.repetition.maximum+1!
        phs = self.enc.encodingLimits.phase.maximum+1!
        if reps > phs:!
            self.calib_frames = reps!
        else:!
            self.calib_frames = phs!
            !
        if self.calib_frames < self.acc_factor:!
            self.calib_frames = self.acc_factor!
        !
        #Frames should be a multiple of the acceleration factor!
        self.frames = math.floor(self.calib_frames/self.acc_factor)*self.acc_factor!
!
        pmri_method =  self.get_parameter('pmri_method')!
        if pmri_method == 'grappa' or pmri_method == 'sense':!
            self.method = pmri_method!
!
    def process(self, acq, data,*args):!
        #....!
!
        	




class Recon(Gadget):!
    def __init__(self, next_gadget=None):!
        #...!
!
    def process_config(self, cfg):!
        #...!
!
    def process(self, acq, data,*args):!
!
        if self.buffer is None:!
            # Matrix size!
            # ...initialize bufffer (code removed, see original source)!
!
        #Now put data in buffer!
        line_offset = self.buffer.shape[1]/2 - self.enc.encodingLimits.kspace_encoding_step_1.!
        self.buffer[:,acq.idx.kspace_encode_step_1+line_offset,:] = data                                                          !
        self.samp_mask[acq.idx.kspace_encode_step_1+line_offset,:] = 1!
        !
        #If last scan in buffer, do FFT and fill image header!
        if acq.isFlagSet(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1) or acq.isFlagSet(ismrmrd.ACQ_LAST_IN_SLICE):!
             #... Set up image header (code removed, see original source)!
!
            #We have not yet calculated unmixing coefficients!
            if self.unmix is None:!
                self.calib_buffer.append((img_head,self.buffer.copy()))!
                self.buffer[:] = 0!
                self.samp_mask[:] = 0!
                !
                if len(self.calib_buffer) >= self.calib_frames: !     !

!     coil_images = transform.transform_kspace_to_image(cal_data,dim=(1,2))!
                    (csm,rho) = coils.calculate_csm_walsh(coil_images)!
                    !
                    if self.method == 'grappa':!
                        self.unmix, self.gmap = grappa.calculate_grappa_unmixing(cal_data, !
                                                                                 self.acc_factor, !
                                                                                 kernel_size=(4,5), !
                                                                                 csm=csm)!
                    elif self.method == 'sense':!
                        self.unmix, self.gmap = sense.calculate_sense_unmixing(self.acc_factor, csm)!
                    else:!
                        raise Exception('Unknown parallel imaging method: ' + str(self.method))!
                        !
                    for c in self.calib_buffer:!
                        recon = transform.transform_kspace_to_image(c[1],dim=(1,2))*np.sqrt(scale)!
                        recon = np.squeeze(np.sum(recon * self.unmix,0))!
                        self.put_next(c[0], recon,*args)!
                        !
                return 0!
                !
            if self.unmix is None:!
                raise Exception("We should never reach this point without unmixing coefficients")!
                !
            recon = transform.transform_kspace_to_image(self.buffer,dim=(1,2))*np.sqrt(scale)!
            recon = np.squeeze(np.sum(recon * self.unmix,0))!
            self.buffer[:] = 0!
            self.samp_mask[:] = 0!
            self.put_next(img_head,recon,*args)!
        return 0	
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Running the Python reconstruction 



Open Source Reconstruction Frameworks 



Gadgetron 

COMPUTER
PROCESSING AND

MODELING -
Full Papers

Magnetic Resonance in Medicine 69:1768–1776 (2013)

Gadgetron: An Open Source Framework for Medical
Image Reconstruction
Michael Schacht Hansen1* and Thomas Sangild Sørensen2,3

This work presents a new open source framework for medical
image reconstruction called the “Gadgetron.” The framework
implements a flexible system for creating streaming data pro-
cessing pipelines where data pass through a series of modules
or “Gadgets” from raw data to reconstructed images. The data
processing pipeline is configured dynamically at run-time based
on an extensible markup language configuration description. The
framework promotes reuse and sharing of reconstruction mod-
ules and new Gadgets can be added to the Gadgetron framework
through a plugin-like architecture without recompiling the basic
framework infrastructure. Gadgets are typically implemented in
C/C++, but the framework includes wrapper Gadgets that allow
the user to implement new modules in the Python scripting
language for rapid prototyping. In addition to the streaming
framework infrastructure, the Gadgetron comes with a set of
dedicated toolboxes in shared libraries for medical image recon-
struction. This includes generic toolboxes for data-parallel (e.g.,
GPU-based) execution of compute-intensive components. The
basic framework architecture is independent of medical imaging
modality, but this article focuses on its application to Cartesian
and non-Cartesian parallel magnetic resonance imaging. Magn
Reson Med 69:1768–1776, 2013. © 2012 Wiley Periodicals, Inc.

Key words: image reconstruction; open source; GPU

INTRODUCTION

Image reconstruction software is an integral part of all
modern medical imaging devices, and medical image
reconstruction research is a strong and active field with
hundreds of articles published each year. In the field of
magnetic resonance imaging (MRI), great advances have
been driven by image reconstruction algorithms. Exam-
ples include parallel MRI reconstruction (1–3) and more
recently compressive sensing (4,5).

Most image reconstruction algorithms are published
without a reference implementation (i.e., without source
code). In some cases, the authors—or the device vendors
they collaborate with—are reluctant to share their algo-
rithms. In many other cases, there is simply no practical

1Division of Intramural Research, National Heart Lung and Blood Institute,
National Institutes of Health, Bethesda, Maryland, USA
2Department of Computer Science, Aarhus University, Aarhus, Denmark
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way of sharing the algorithms; they may rely on a great
deal of accessory code, some of which could be vendor spe-
cific or even contain vendor-provided code that cannot be
shared. Regardless of the reasons, it undermines the scien-
tific process that readers and reviewers are prevented from
reproducing the results of reconstruction research articles.
It is exceedingly difficult for other researchers to evaluate
how a given algorithm might perform given a different type
of data or how it might interact with other algorithms. As a
result, researchers who wish to build on previous work by
other groups often have to reimplement previous work for
comparison purposes, as there is no available common plat-
form for sharing medical image reconstruction algorithms.
Given the complexities of new reconstruction algorithms,
it may be difficult or indeed impossible reimplement the
methods described in research articles. This problem has
been pointed out by other researchers, e.g. in the report by
Buckheit and Donoho (6).

The proof-of-concept implementations that form the
basis of many publications have further limitations. They
are often unsuitable for deployment in a clinical (or clin-
ical research) environment where they could be tested
in broader patient populations. More specifically, the
reconstruction algorithm development is often done in
“offline” applications that are difficult to integrate with
medical devices in such a way that the reconstruction
can be performed “online.” Consequently, proper eval-
uation of a given reconstruction algorithm is not often
done until a medical device vendor implements it in a
commercial product. Furthermore, when developers wish
to deploy their algorithms clinically they could be lim-
ited by the device manufacturers reconstruction develop-
ment environment. As manufacturers are under regulatory
restrictions and consequently have long lead times on
integration of the latest hardware and software in their
platforms, delays in early testing of new algorithms can
result. Moreover, a new algorithm may rely on more com-
putational power than that is available from the manu-
facturers hardware; the algorithm may rely on dedicated
high-performance computing equipment such as graphics
processing units (GPUs) (7–9), or the algorithm may simply
need some software libraries that are not available or easy
to integrate into a commercial medical device.

Thus, it would be desirable to have an open source plat-
form for implementing medical image reconstruction algo-
rithms in general and more specifically MRI reconstruc-
tion algorithms. To address the above-mentioned concerns,
such a platform should have the following characteristics:

• Free. The platform should be freely available to all
researchers. Specifically, it should be provided with

© 2012 Wiley Periodicals, Inc. 1768



Gadgetron Architecture 
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Generic Scanner Integration 



Example - Cartesian GRAPPA 

§ High-throughput GRAPPA 

§ Designed for multi-slice 2D 
real-time imaging 
(interventional) 

§ GRAPPA coefficients 
calculated on GPU 



Cartesian GRAPPA 



Online Python Editing 



Converting Python chains to Gadgetron 



Converting Gadgetron XML to Python 



GPI	

A Graphical Development Environment for Scientific Algorithms	




Introduction	


•  Modular	


•  Side by Side Comparisons	


•  Ease of Reuse	


•  Data & Algorithm Analysis	


•  Reconstruction, Simulations, Pulse Sequence 
Development	


Spiral Reconstruction	




ISMRMRD Support in GPI 

https://github.com/hansenms/gpi_ismrmrd	




Running the Python reconstruction 



Tear-Off Menu 

Tear Point 

Node Menu 

Widgets 

Node Label 

Terminal/Console 

Node Edge Port 

Main Menu 

Mouse Menu 

Graphical interface	




K-space filter	
K-space filter	




coil combination	
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codeare	  
	  
Common	  Data	  Exchange	  And	  Reconstruction	  
www.codeare.org	  



codeare	
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Realisation	  
Algorithm	  library	  and	  client/server	  application	  

§  N-‐dimensional	  Data	  structure	  called	  “Matrix”	  
§  Algorithm	  dictionary	  for	  arithmetic,	  linear	  algebra,	  Fourier	  
transformation,	  statistics,	  optimisation,	  ;ile	  IO,	  …	  	  

§  Near	  textbook	  high	  level	  language	  for	  implementation	  	  

	  
	  
§  Usage	  
§  C++	  library	  
§  stand	  alone	  application	  
§  client	  server	  application	  for	  realtime	  scanner	  feedback	  	  

Matrix<cf> A = phantom<cf>(256), B,!
!cxnoise = randn<cf>(256);!

DFT<f> F;!
B = F / (F*A + cxnoise);!
print (B, ‘B.png’, ‘r600’);!
fopen (f, ‘B.mat’, WRITE); !
fwrite (f, conj(B));!
fclose (f);!



§  Reconstruction	  strategies	  
often	  involve	  multiple	  
reusable	  steps	  

§  Example	  on	  write	  is	  part	  
of	  the	  package	  to	  	  
demonstrate	  how	  this	  is	  
achieved	  in	  codeare	  

§  Real-‐day	  example	  involves	  
the	  estimation	  of	  receive	  
sensitivties,	  reduction	  of	  
coils	  and	  subsequent	  	  
CS	  reconstruction	  

codeare	
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Usage	  
Reconstruction	  chain	  



Critical Components of Pipeline Processing 

§ Modularity 

• Reusable code 

§ Event driven processing 

§ Multi-threading 

§ Standardized raw data representation 

• Meaningful data labels 
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Open Source Resources 

§ Course Materials: http://hansenms.github.io/sunrise 

§  ISMRMRD: 
• http://ismrmrd.github.io 
• http://github.com/ismrmrd/ismrmrd-python 
• http://github.com/ismrmrd/ismrmrd-python-tools 

§ GADGETRON: 
• http://gadgetron.github.io 

§ GPI: 
• http://gpilab.com 
• http://github.com/hansenms/gpi_ismrmrd 

§ CODEARE: 
• http://www.codeare.org 


