

Nuts & Bolts of Advanced Imaging

The Image Reconstruction Pipeline

Michael S. Hansen, PhD

Magnetic Resonance Technology Program
National Institutes of Health, NHLBI

Speaker Name: Michael S. Hansen

I have the following financial interest or relationship to
disclose with regard to the subject matter of this presentation:

Company Name: Siemens Medical Solutions
Type of Relationship: Research Agreement

Declaration of���
Financial Interests or

Relationships	

Outline

§ What is a reconstruction pipeline

§ Common pipeline elements:

• Noise adjust, filtering, accumulation, FFT

§ A Simple Reconstruction Pipeline Example

• Cartesian Parallel Imaging

§ Examples of pipeline architectures

• Open Source

• Vendors

PART 1

The role of the image reconstruction process

Reconstruction Pseudo Code

function reconstruct(datafile):!

 (data,headers) = read_data(data_file)!

 data = prewhiten(data)!

 calibration = calibrate(data)!

 images = ifft(data)!

 images = coil_combine(images, calibration) !

Problems with the reconstruct function

§ Reconstruction does not start until all data is stored

§ Parallelization requires low level management

§ Changes to reconstruction software requires editing of
source code function (and recompilation of code)

§ Encourages bad programming practices:

• Poorly defined data structures (interfaces)

• Duplication of code

A modular pipeline

Module
config

head,data head,data

state

code

§ Modular reconstruction design

§ Well defined interfaces and data structures

§ Processing can start when first readout is acquired

§ Modules can be exchanged (without recompiling)

§ Parallelization is inherent if modules run independently

Module
state

code

Module
state

code

Module
state

code

Module
state

code

Module
state

code

data images

prewhiten	
 correction	
 ifft	
 combine	
 filter	

A modular pipeline

header
readout
meta

header
image
meta

Restricted © Siemens AG 2015 All rights reserved.
Page 10

Siemens Reconstruction Pipeline

2

MR8ICE – ICE Overview
Page 3

Version 3.1 Confidential
All rights reserved

ICE

ICE is the image processing environment used on the Magnetom to
measure and analyze data. It executes primarily on the MARS, operating
with an Ubuntu Linux operating system.

The Ice Program is specified by the pulse sequence and starts
simultaneously with the sequence.

ICE can also run on a standalone Windows 7 computer.
It executes also on the Host (Windows 7) for offline PostProcessing jobs.

3

MR8ICE – ICE Overview
Page 4

Version 3.1 Confidential
All rights reserved

Image Reconstruction Pipeline

RAID

up to 500 GB

r/w: 210 MB/s sustained

needs only max. 5% of 1 CPU

Feedback d 10 ms

DB

Sequence

Data + MDH
RX

up to 12 x
parallel Scanning
and ImageRecon

MARS (MrIrisContainer)

HostMARS (SeqControlTask)

Im
ag

es

up to
96 GB
RAM

MR SCANNER – ICE PERSPECTIVE

Restricted © Siemens AG 2015 All rights reserved.
Page 11

Functor

•  Modules are called
functors.

•  Data structures are
well defined on
interfaces.

•  Modules are
interchangeable.

•  Configured at run time.

Restricted © Siemens AG 2015 All rights reserved.
Page 12

Functor Chain

The user interfaces with the underlying framework through specification of a file
known as the Ice program. This program specifies the functor chain of operations
and configuration parameters, based upon the type of pulse sequence and the
desired data output (integer images, complex raw data).

Page 13

The Basics of a Reconstruction Application

Data Sorting and Organization

•  Meaningful data structure based on application or desired
processing

•  Raw acquisition data can be: scanner, raw files, data streams

Processing Pipeline

•  Group of Processing Sections: Modules that typically “do math” and have
custom inputs/output

•  The pipeline builds and wires the Sections in stages that define the
processing flow

•  Pipeline building defines:
–  Processing order
–  Section dependencies
–  Distribution of processing

Page 14

Example

Processing Flow

Acquisition
/Sorting

Stage 1

Section A
Processing

Outputs
(Images)

Processing Pipeline

Stage 2

Section B

Section C

Stage 3

Section D

Page 15

Programming Window: The Orchestra SDK

Collection of modular and reusable product recon
algorithms

•  MATLAB functions
•  C++ classes and functions Raw file readers

•  APIs for accessing data and
parameters

GE example pipelines
•  Cartesian, EPI,
Spectroscopy Multi-Platform

•  Linux, Mac,
Windows

DICOM Toolbox
•  Create, read, and write compliant
files
•  Store/stream images to networked
peers

Data	 Stream	
RAW MR Signal

Preprocessing

RAW Data: Samples (Complex Floating Point)

FFT

CPX Data: Image (Complex Floating Point)

Image Production & Scaling

REC Data: Image (Integer 8,12 bit)

Rescaling

Display Grey Levels (after Windowing)

Measurement

Reconstruction

Viewing

Introduction to Recon 2.0
Nodes, Reconstruction Graph

RAW Data

Correction for Hardware Imperfections

Gridding (For EPI e.t.c)

X-FFT , Z-FFT, Y-FFT

Sense Unfolding

Complex Geometry Corrections

Scaling Images

Reconstruction is a sequence of steps for
transforming data received from the previous step
and passing it onto the next step.

Nodes The individual steps performed in the
reconstruction pipeline are referred to as Nodes.

Reconstruction Graph The pipeline connecting the
nodes to each other is called as the reconstruction
graph.

•  ready-to-use platform for complete MR image reconstruction
•  raw data processed via independent, easy to adapt processing modules called “nodes”
	

Introduction to Recon 2.0
Framework Architecture

S P

DataObject

Node

DataObject

S PNode

DataObject

Protocol
Definit ion

Script

P r o t o c o l
P a r a m e t e r s

Node Parameters Node Parameters

S	 Socket	

P	 Plug	

Raw
Data Labels +	

DataObject

Array Dicti-
onary +	

DataObject

Summary

§ Modern reconstruction software is often implemented as
streaming pipeline architectures

• Modularity

• Performance

§ Modules have well defined data interfaces and are
interchangeable to some extend

§ Modules can often be assembled at run-time to form
different recon programs (without recompilation)

What to expect in Part 2

§ We will play with a simple recon pipeline:
• Built in Python
• Basic Parallel Imaging reconstruction

§ Open Raw Data Standard
•  ISMRMRD

§ Open Source Pipeline Environments
• Gadgetron
• GPI
• Codeare

Nuts & Bolts of Advanced Imaging

The Image Reconstruction Pipeline

Michael S. Hansen, PhD

Magnetic Resonance Technology Program
National Institutes of Health, NHLBI

Speaker Name: Michael S. Hansen

I have the following financial interest or relationship to
disclose with regard to the subject matter of this presentation:

Company Name: Siemens Medical Solutions
Type of Relationship: Research Agreement

Declaration of���
Financial Interests or

Relationships	

PART 2

The role of the image reconstruction process

A modular pipeline

Module
config

head,data head,data

state

code

§ Modular reconstruction design

§ Well defined interfaces and data structures

§ Processing can start when first readout is acquired

§ Modules can be exchanged (without recompiling)

§ Parallelization is inherent if modules run independently

Module
state

code

Module
state

code

Module
state

code

Module
state

code

Module
state

code

data images

prewhiten	
 correction	
 ifft	
 combine	
 filter	

A modular pipeline

Implement 2D Cartesian Parallel Imaging

SENSE: Sensitivity Encoding for Fast MRI

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger*

New theoretical and practical concepts are presented for consid-
erably enhancing the performance of magnetic resonance imag-
ing (MRI) by means of arrays of multiple receiver coils. Sensitiv-
ity encoding (SENSE) is based on the fact that receiver sensitivity
generally has an encoding effect complementary to Fourier
preparation by linear field gradients. Thus, by using multiple
receiver coils in parallel scan time in Fourier imaging can be
considerably reduced. The problem of image reconstruction
from sensitivity encoded data is formulated in a general fashion
and solved for arbitrary coil configurations and k-space sam-
pling patterns. Special attention is given to the currently most
practical case, namely, sampling a common Cartesian grid with
reduced density. For this case the feasibility of the proposed
methods was verified both in vitro and in vivo. Scan time was
reduced to one-half using a two-coil array in brain imaging. With
an array of five coils double-oblique heart images were obtained
in one-third of conventional scan time. Magn Reson Med
42:952–962, 1999. ! 1999 Wiley-Liss, Inc.
Key words: MRI; sensitivity encoding; SENSE; fast imaging;
receiver coil array

Among today’s many medical imaging techniques, MRI
stands out by a rarely stated peculiarity: the size of the
details resolved with MRI is much smaller than the wave-
length of the radiation involved. The reason for this
surprising ability is that the origin of a resonance signal is
not determined by optical means such as focusing or
collimation but by spectral analysis. The idea of Lauterbur
(1) to encode object contrast in the resonance spectrum by a
magnetic field gradient forms the exclusive basis of signal
localization in Fourier imaging. However powerful, the
gradient-encoding concept implies a fundamental restric-
tion. Only one position in k-space can be sampled at a time,
making k-space speed the crucial determinant of scan time.
Accordingly, gradient performance has been greatly en-
hanced in the past, reducing minimum scan time drasti-
cally with respect to earlier stages of the technique. How-
ever, due to both physiological and technical concerns,
inherent limits of k-space speed have almost been reached.

An entirely different approach to sub-wavelength resolu-
tion in MRI is based on the fact that with a receiver placed
near the object the contribution of a signal source to the
induced voltage varies appreciably with its relative posi-
tion. That is, knowledge of spatial receiver sensitivity
implies information about the origin of detected MR sig-
nals, which may be utilized for image generation. Unlike
position in k-space, sensitivity is a receiver property and
does not refer to the state of the object under examination.

Therefore, samples of distinct information content can be
obtained at one time by using distinct receivers in parallel
(2), implying the possibility of reducing scan time in
Fourier imaging without having to travel faster in k-space.

In 1988 Hutchinson and Raff (3) suggested dispensing
entirely with phase encoding steps in Fourier imaging by
using a very large number of receivers. Kwiat et al. (4)
proposed a similar concept in 1991. In 1989 Kelton et al. (5)
suggested staying with phase encoding, yet reducing the
number of phase encoding steps by a power of 2 using a
corresponding number of receivers. In Kelton et al. (5), as
in all later concepts, phase encoding is reduced by increas-
ing the distance of readout lines in k-space such that the
sampled area remains unchanged. The Kelton approach
was modified by Ra et al. (6) in 1991, allowing the number
of coils to be any integer, yet still equal to the factor of scan
time reduction.

In all contributions procedures for image reconstruction
were derived. However, applications of the concepts noted
have not been reported, reflecting the considerable practi-
cal challenges of sensitivity based imaging, including the
signal-to-noise ratio (SNR) issue, sensitivity assessment,
and hardware requirements. Only in 1997 did Sodickson et
al. (7) report the first successful experiments using parallel
receivers for the purpose of scan time reduction, introduc-
ing the SMASH method (SiMultaneous Acquisition of
Spatial Harmonics). For image reconstruction SMASH
relies on the ability to approximate low-order harmonics of
the desired field of view (FOV) by linear combination of
sensitivity functions. The technique is therefore restricted
to appropriate combinations of coil arrangement, slice
geometry, and reduction factor.

To overcome the restrictions of previously proposed
methods, in this work we reformulate the problem of image
reconstruction from multiple receiver data. Using the
framework of linear algebra, two different reconstruction
strategies have been derived. In their general forms the
resulting formulae hold for arbitrary sampling patterns in
k-space. A detailed discussion is dedicated to the most
practical case, namely, sampling along a Cartesian grid in
k-space corresponding to standard Fourier imaging with
reduced FOV.

Owing to the underlying principle, the concepts out-
lined in this work have been named SENSE, short for
SENSitivity Encoding (8–10). Together with SENSE theory
and methods, a detailed SNR analysis is presented as well
as an experimental in vitro evaluation and a selection of in
vivo examples.

THEORY AND METHODS
In this section SENSE theory is presented and methods for
image reconstruction from sensitivity encoded data are
derived. The theory addresses the most general case of
combining gradient and sensitivity encoding. That is, no

Institute of Biomedical Engineering and Medical Informatics, University of
Zürich and Swiss Federal Institute of Technology Zürich, Zürich, Switzerland.
Grant sponsor: EUREKA; Grant number: EU1353; Grant sponsor: KTI; Grant
number: 3030.2.
*Correspondence to: Prof. Dr. P. Boesiger, Institute of Biomedical Engineering
andMedical Informatics, University and ETH Zürich, Gloriastrasse 35, CH-8092
Zürich Switzerland.
Received 30 July 1998; revised 18 May 1999; accepted 9 July 1999.

Magnetic Resonance in Medicine 42:952–962 (1999)

952! 1999 Wiley-Liss, Inc.

Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA)
Mark A. Griswold,1* Peter M. Jakob,1 Robin M. Heidemann,1 Mathias Nittka,2

Vladimir Jellus,2 Jianmin Wang,2 Berthold Kiefer,2 and Axel Haase1

In this study, a novel partially parallel acquisition (PPA) method
is presented which can be used to accelerate image acquisition
using an RF coil array for spatial encoding. This technique,
GeneRalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) is an extension of both the PILS and VD-AUTO-
SMASH reconstruction techniques. As in those previous meth-
ods, a detailed, highly accurate RF field map is not needed prior
to reconstruction in GRAPPA. This information is obtained from
several k-space lines which are acquired in addition to the
normal image acquisition. As in PILS, the GRAPPA reconstruc-
tion algorithm provides unaliased images from each compo-
nent coil prior to image combination. This results in even higher
SNR and better image quality since the steps of image recon-
struction and image combination are performed in separate
steps. After introducing the GRAPPA technique, primary focus
is given to issues related to the practical implementation of
GRAPPA, including the reconstruction algorithm as well as anal-
ysis of SNR in the resulting images. Finally, in vivo GRAPPA im-
ages are shown which demonstrate the utility of the technique.
Magn Reson Med 47:1202–1210, 2002. © 2002 Wiley-Liss, Inc.
Key words: parallel imaging; rapid MRI; RF coil arrays; SMASH;
SENSE; PILS

Since the development of the NMR phased array (1) in the
late 1980s, multicoil arrays have been designed to image
almost every part of the human anatomy. These multicoil
arrays are primarily used for their increased signal-to-noise
ratio (SNR) compared to volume coils or large surface coils.

Recently, several partially parallel acquisition (PPA)
strategies have been proposed (2–19) which have the po-
tential to revolutionize the field of fast MR imaging. These
techniques use spatial information contained in the com-
ponent coils of an array to partially replace spatial encod-
ing which would normally be performed using gradients,
thereby reducing imaging time. In a typical PPA acquisi-
tion, only a fraction of the phase encoding lines are ac-
quired compared to the conventional acquisition. A spe-
cialized reconstruction is then applied to the data to re-
construct the missing information, resulting in the full
FOV image in a fraction of the time.

The primary limiting factor of the majority of PPA tech-
niques is their requirement of accurate knowledge of the
complex sensitivities of component coils. In practice, the

actual coil sensitivity information is difficult to determine
experimentally due to contamination by, for example,
noise. Additionally, subject or coil motion between the
time of coil calibration and image acquisition can be prob-
lematic if this information is not taken into account during
the reconstruction.

Last year, we presented the parallel imaging with local-
ized sensitivities (PILS) technique (14) and demonstrated
several advantages. In PILS it is assumed that each com-
ponent coil has a localized sensitivity profile. Whenever
this is true, uncombined coil images can be formed for
each component coil using only knowledge of the position
of the coil in the FOV, which can be obtained trivially
using a number of methods (14). Besides providing an
efficient reconstruction process (14,20), PILS was shown
to provide optimal SNR for all accelerations tested, since
the uncombined coil images can be combined using a sum
of squares or other optimal array reconstruction method.

The PILS technique represents a departure in recon-
struction philosophy compared to other previous PPA
methods. In all previous methods the steps of image re-
construction (unaliasing) and SNR optimization (image
combination) occur in one step. Therefore, both processes
had to be simultaneously optimized for a good reconstruc-
tion. On the other hand, the process of unaliasing and SNR
optimization are completely decoupled in PILS, so that
both can potentially be optimized separately. We believe
that this general philosophy could lead to more robust and
optimized PPA reconstructions. However, in order to de-
couple these processes uncombined images need to be
formed by the PPA reconstruction technique. To date, no
such method other than PILS exists.

In this study, we describe the first extension of this basic
philosophy which is applicable to coils which are not
necessarily spatially localized. In this technique, Gene-
Ralized Autocalibrating Partially Parallel Acquisitions
(GRAPPA), a more generalized view of the variable density
AUTO-SMASH (VD-AUTO-SMASH) technique (15), is
used to generate uncombined coil images from each coil in
the array. It is shown that this reconstruction process
results in images in higher SNR and better overall image
quality compared to previous VD-AUTO-SMASH imple-
mentations. After introduction of the reconstruction
method, computer simulations will be presented which
highlight the benefits of the GRAPPA reconstruction. Fi-
nally, the first in vivo results using an eight-channel re-
ceiver system and the GRAPPA reconstruction are shown.

THEORY
Review of AUTO-SMASH and VD-AUTO-SMASH

In order to understand the GRAPPA process, it is instruc-
tive to review the basics of both the AUTO-SMASH (11)

1Julius-Maximilians Universität Würzburg, Physikalisches Institut, Würzburg,
Germany.
2Siemens Medical Solutions, Erlangen, Germany.
*Correspondence to: Mark Griswold, Department of Physics, University of
Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: mark@physik.
uni-wuerzburg.de
Received 7 September 2001; revised 14 January 2002; accepted 13 February
2002.
DOI 10.1002/mrm.10171
Published online in Wiley InterScience (www.interscience.wiley.com).

Magnetic Resonance in Medicine 47:1202–1210 (2002)

© 2002 Wiley-Liss, Inc. 1202

Cartesian Parallel Imaging - Ingredients

1.  Data

2.  Software

Details and code: http://hansenms.github.io/sunrise	

ISMRM Raw Data Format

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ismrmrdHeader xmlns="http://www.ismrm.org/ISMRMRD"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ismrm.org/ISMRMRD ismrmrd.xsd">

 <encoding>
 <encodedSpace>
 <matrixSize>
 <x>512</x><y>256</y><z>1</z>
 </matrixSize>
 <fieldOfView_mm>
 <x>600</x><y>300</y><z>6</z>
 </fieldOfView_mm>
 </encodedSpace>
 <reconSpace>
 <matrixSize>
 <x>256</x><y>256</y><z>1</z>
 </matrixSize>
 <fieldOfView_mm>
 <x>300</x><y>300</y><z>6</z>
 </fieldOfView_mm>
 </reconSpace>
 <encodingLimits>
 <kspace_encoding_step_1>
 <minimum>0</minimum>
 <maximum>255</maximum>
 <center>128</center>
 </kspace_encoding_step_1>
 <repetition>
 <minimum>0</minimum>
 <maximum>1</maximum>
 <center>0</center>
 </repetition>
 </encodingLimits>
 <trajectory>cartesian</trajectory>
 </encoding>

</ismrmrdHeader>

http://ismrmrd.github.io	

ISMRM Raw Data Format

Info on converters: michael.hansen@nih.gov	

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

Pipeline Module (aka Gadget, Node, Functor, etc.)

class Module/Gadget/Functor:	

	
•  state (member variables, buffers, etc.)	

•  next module	

•  process_config(conf)	

•  sets up the module	

•  uses general header information	

•  process(head, data, meta)	

•  processes actual data	

•  operates on one data element at a time	

	

Loop counter information	

Timing information	

Sampled data	

Image data	

OPTIONAL	

Data labels	

Image labels	

Calculated timing	

Scaling information	

Etc.	

Some example Python code

def define_gadget_chain():!
 g2 = Recon()!
 g1 = RemOS(next_gadget=g2)!
 g0 = CoilReduce(next_gadget=g1)!
 gb = PCA(next_gadget=g0)!
 ga = NoiseAdj(next_gadget=gb) !
 return ga!
!
g_python = define_gadget_chain()!
!

dset = ismrmrd.Dataset(filename, 'dataset', create_if_needed=False)!
!
!
Send in data!
#First ISMRMRD XML header!
gadget_chain_config(g_python,dset.read_xml_header())!
!
Loop through the rest of the acquisitions and stuff!
for acqnum in range(0,dset.number_of_acquisitions()):!
 acq = dset.read_acquisition(acqnum)!
 g_python.process(acq.getHead(),acq.data.astype('complex64'))!
!
Wait for recon to finish!
gadget_chain_wait(g_python)!

import ismrmrd!
import ismrmrd.xsd!
from gadgetron import gadget_chain_wait!
from gadgetron import gadget_chain_config!
from tpat_snr_scale import RemOS, NoiseAdj, PCA, CoilReduce, Recon!

SET UP MODULES	

OPEN DATASET	

RECONSTRUCT	

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

Noise in Parallel Imaging

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

3

Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)

s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	

In practice, we are affected by noise	

Noise correlation

Noise covariance matrix

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉

Python!
% eta: [Ncoils, Nsamples]!
Psi = (1/(M-1))*np.asmatrix(eta)*np.asmatrix(eta).H!

We can measure this noise covariance:	

“Normal Coil”	
 “Broken Coil”	

Psi Examples – 32 Channel Coil

Examination of the noise covariance matrix is an important QA tool. Reveals broken
elements, faulty pre-amps, etc. 	

Noise Pre-Whitening

We would like to apply an operation such that we have unit variance in all
channels:	

Noise Pre-Whitening

More generally, we want to weight the equations with the “inverse square
root” of the noise covariance, if	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

3

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

We will solve:	

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

s = E⇢+ ⌘ (17)

Ax+ ⌘ = b =

2

4
c1 c2

c3 c4

c5 c6

3

5

x1

x2

�
+

2

4
X1

X2

X3

3

5
=

2

4
b1

b2

b3

3

5
(18)

X

i

: Random value with zero mean (µ = 0) and variance �

2
i

�

2
3 = 5�

2
1 = 5�

2
2 (19)

 = LL

H
(20)

L

�1
Ax = L

�1
b (21)

x =

�
A

H

�1
A

��1
A

H

�1
b (22)

3

Or:	

In practice, we simply generate “pre-whitened” input data before recon	

Noise Prewhitening - Python Code

import numpy as np!
!
def calculate_prewhitening(noise, scale_factor=1.0):!
 '''Calculates the noise prewhitening matrix!
!
 :param noise: Input noise data (array or matrix), ``[coil, nsamples]``!
 :scale_factor: Applied on the noise covariance matrix. Used to !
 adjust for effective noise bandwith and difference in !
 sampling rate between noise calibration and actual measurement: !
 scale_factor = (T_acq_dwell/T_noise_dwell)*NoiseReceiverBandwidthRatio!
 !
 :returns w: Prewhitening matrix, ``[coil, coil]``, w*data is prewhitened!
 '''!
!
 noise_int = noise.reshape((noise.shape[0],noise.size/noise.shape[0]))!
 M = float(noise_int.shape[1]) !
 dmtx = (1/(M-1))*np.asmatrix(noise_int)*np.asmatrix(noise_int).H !
 dmtx = np.linalg.inv(np.linalg.cholesky(dmtx));!
 dmtx = dmtx*np.sqrt(2)*np.sqrt(scale_factor);!
 return dmtx!
!
def apply_prewhitening(data,dmtx):!
 '''Apply the noise prewhitening matrix!
!
 :param noise: Input noise data (array or matrix), ``[coil, ...]``!
 :param dmtx: Input noise prewhitening matrix!
 !
 :returns w_data: Prewhitened data, ``[coil, ...]``,!
 '''!
!
 s = data.shape!
 return np.asarray(np.asmatrix(dmtx)*np.asmatrix(data.reshape(data.shape[0],data.size/data.shape[0]))).reshape(s)!
 !

Noise Pre-Whitening – In vivo example
In vivo stress perfusion case where broken coil element resulted in non-
diagnostic images.	

Without pre-whitening	
 With pre-whitening	

Example provided by Peter Kellman, NIH 	

Noise Adjust Module

class NoiseAdj(Gadget):!
 def __init__(self, next_gadget = None):!
 Gadget.__init__(self, next_gadget)!
 self.noise_data = list()!
 self.noise_dmtx = None!
 def process(self,acq,data,*args):!
 if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):!
 self.noise_data.append((acq,data))!
 else:!
 if len(self.noise_data):!
 profiles = len(self.noise_data)!
 channels = self.noise_data[0][1].shape[0]!
 samples_per_profile = self.noise_data[0][1].shape[1]!
 noise = np.zeros((channels,profiles*samples_per_profile),dtype=np.complex64)!
 counter = 0!
 for p in self.noise_data:!
 noise[:,counter*samples_per_profile:(counter*samples_per_profile+samples_per_profile)] = p[1]!
 counter = counter + 1!
 !
 scale = (acq.sample_time_us/self.noise_data[0][0].sample_time_us)*0.79!
 self.noise_dmtx = coils.calculate_prewhitening(noise,scale_factor=scale)!
 !
 #Test the noise adjust!
 d = self.noise_data[0][1]!
 d2 = coils.apply_prewhitening(d, self.noise_dmtx) !
 self.noise_data = list()!
 !
 if self.noise_dmtx is not None:!
 data2 = coils.apply_prewhitening(data, self.noise_dmtx)!
 else:!
 data2 = data!
 !
 self.put_next(acq,data2)!
 return 0!

BUFFERING	

CALCULATE PREWHITENER	

APPLY	

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

PCA Module
class PCA(Gadget):!
 def __init__(self, next_gadget=None):!
 Gadget.__init__(self, next_gadget) !
 self.calib_data = list()!
 self.pca_mtx = None!
 self.max_calib_profiles = 100!
 self.samples_to_use = 16!
 self.buffering = True!
 !
 def process(self,acq,data,*args): !
 if self.buffering:!
 self.calib_data.append((acq,data))!
 !
 if (len(self.calib_data)>=self.max_calib_profiles or acq.isFlagSet(ismrmrd.ACQ_LAST_IN_SLICE)):!
 #We are done buffering calculate pca transformation!
 # ...book keeping code (removed to save space, refer to original code)!
 !
 A = np.zeros((total_samples,channels), dtype=np.complex64)!
 counter = 0!
 for p in self.calib_data:!
 d = p[1][:, acq.center_sample-(samp_to_use>>1):acq.center_sample+(samp_to_use>>1)]!
 A[counter*samp_to_use:counter*samp_to_use+samp_to_use,:] = np.transpose(d)!
 counter = counter+1!
 !
 m = np.mean(A,0)!
 A_m = A - m.reshape((1,m.shape[0]))!
 U, s, V = np.linalg.svd(A_m, full_matrices=False)!
 self.pca_mtx = V!
!

! for p in self.calib_data:!
 data2 = np.dot(self.pca_mtx,p[1])!
 self.put_next(p[0],data2)!
 !
 self.buffering = False!
 self.calib_data = list()!
 return 0!
 else:!
 if self.pca_mtx is not None:!
 data2 = np.dot(self.pca_mtx,data)!
 self.put_next(acq,data2,*args)!
 else:!
 self.put_next(acq,data,*args)!
 !
 return 0!
!

BUFFERING	

CALCULATE PCA COEFFICIENTS	

APPLY	

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

class CoilReduce(Gadget):!
 def __init__(self, next_gadget = None):!
 Gadget.__init__(self, next_gadget)!
 self.coils_out = 16!
 !
 def process_config(self, conf):!
 coils_out = self.get_parameter("coils_out")!
 if (coils_out is not None):!
 self.coils_out = int(coils_out)!
!
 def process(self, acq, data, *args):!
 if acq.active_channels > self.coils_out:!
 data2 = data[0:self.coils_out,:]!
 acq.active_channels = self.coils_out!
 else:!
 data2 = data!
 !
 self.put_next(acq,data2,*args)!
 return 0!

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

class RemOS(Gadget):!
 def process_config(self, conf):!
 return!
!
 def process(self, acq, data,*args):!
 if not acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):!
 ro_length = acq.number_of_samples!
 padded_ro_length = (acq.number_of_samples-acq.center_sample)*2!
 if padded_ro_length != ro_length: #partial fourier!
 data2 = np.zeros((data.shape[0], padded_ro_length),dtype=np.complex64)!
 offset = (padded_ro_length>>1) - acq.center_sample!
 data2[:,0+offset:offset+ro_length] = data!
 else:!
 data2 = data!
 !
 data2=transform.transform_kspace_to_image(data2,dim=(1,))!
 data2=data2[:,(padded_ro_length>>2):(padded_ro_length>>2)+(padded_ro_length>>1)]!
 data2=transform.transform_image_to_kspace(data2,dim=(1,)) * np.sqrt(float(padded_ro_length)/ro_length)!
 acq.center_sample = padded_ro_length>>2!
 acq.number_of_samples = data2.shape[1]!
 self.put_next(acq,data2,*args)!
 return 0 !

Reconstruction Pipeline – TSENSE, TPAT, TGRAPPA

Noise	

Prewhitening	

Remove	

Oversampling	

PCA	

Compression	

Remove	

Coils	

Recon	

FFT/Combine	

RAW DATA	

ISMRMRD	

IMAGES	

OPTIONAL	

SENSE – Image Synthesis with Unmixing
Coefficients

Aliased coil images	
 Unmixing Coefficients	

.* 	

SENSE – Simple Rate 4 Example

F : Image formation matrix

L : Linear transform

s =

2

666666666666666666666666666664

S1(k1)

S1(k2)

.

.

.

S1(kN
k

)

�
S2(k1)

S2(k2)

.

.

.

S2(kN
k

)

�
.

.

.

�
S

N

c

(k1)

S

N

c

(k2)

.

.

.

S

N

c

(k

N

k

)

3

777777777777777777777777777775

(8)

E =

2

6664

FC1

FC2
.

.

.

FC
N

c

3

7775
(9)

⇢(x) =

X

N

w

i

⇤ s
i

(10)

g(x) =

sX

N

|w
i

|2 (11)

2

6664

S1(x1) S1(x2)

S2(x1) S2(x2)

.

.

.

.

.

.

S

N

c

(x1) S

N

c

(x2)

3

7775

⇢(x1)

⇢(x2)

�
=

2

6664

a1

a2
.

.

.

a

N

c

3

7775
(12)

S⇢ = a (13)

˜⇢ = S†a = Ua (14)

⇢̃(x1) =

N

cX

i=0

u

i

a

i

(15)

2

g(x1) =

vuut
N

cX

i=0

|u
i

|2

vuut
N

cX

i=0

|S
i

|2 (16)

3

Recon Module
class Recon(Gadget):!
 def __init__(self, next_gadget=None):!
 Gadget.__init__(self, next_gadget) !
 self.header = None!
 self.enc = None!
 self.acc_factor = None!
 self.buffer = None!
 self.samp_mask = None!
 self.header_proto = None!
 self.calib_buffer = list()!
 self.unmix = None!
 self.gmap = None!
 self.calib_frames = 0!
 self.method = 'grappa'!
 !
 def process_config(self, cfg):!
 self.header = ismrmrd.xsd.CreateFromDocument(cfg)!
 self.enc = self.header.encoding[0]!
!
 #Parallel imaging factor!
 self.acc_factor = self.enc.parallelImaging.accelerationFactor.kspace_encoding_step_1!
 !
 reps = self.enc.encodingLimits.repetition.maximum+1!
 phs = self.enc.encodingLimits.phase.maximum+1!
 if reps > phs:!
 self.calib_frames = reps!
 else:!
 self.calib_frames = phs!
 !
 if self.calib_frames < self.acc_factor:!
 self.calib_frames = self.acc_factor!
 !
 #Frames should be a multiple of the acceleration factor!
 self.frames = math.floor(self.calib_frames/self.acc_factor)*self.acc_factor!
!
 pmri_method = self.get_parameter('pmri_method')!
 if pmri_method == 'grappa' or pmri_method == 'sense':!
 self.method = pmri_method!
!
 def process(self, acq, data,*args):!
 #....!
!
 	

class Recon(Gadget):!
 def __init__(self, next_gadget=None):!
 #...!
!
 def process_config(self, cfg):!
 #...!
!
 def process(self, acq, data,*args):!
!
 if self.buffer is None:!
 # Matrix size!
 # ...initialize bufffer (code removed, see original source)!
!
 #Now put data in buffer!
 line_offset = self.buffer.shape[1]/2 - self.enc.encodingLimits.kspace_encoding_step_1.!
 self.buffer[:,acq.idx.kspace_encode_step_1+line_offset,:] = data !
 self.samp_mask[acq.idx.kspace_encode_step_1+line_offset,:] = 1!
 !
 #If last scan in buffer, do FFT and fill image header!
 if acq.isFlagSet(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1) or acq.isFlagSet(ismrmrd.ACQ_LAST_IN_SLICE):!
 #... Set up image header (code removed, see original source)!
!
 #We have not yet calculated unmixing coefficients!
 if self.unmix is None:!
 self.calib_buffer.append((img_head,self.buffer.copy()))!
 self.buffer[:] = 0!
 self.samp_mask[:] = 0!
 !
 if len(self.calib_buffer) >= self.calib_frames: ! !

! coil_images = transform.transform_kspace_to_image(cal_data,dim=(1,2))!
 (csm,rho) = coils.calculate_csm_walsh(coil_images)!
 !
 if self.method == 'grappa':!
 self.unmix, self.gmap = grappa.calculate_grappa_unmixing(cal_data, !
 self.acc_factor, !
 kernel_size=(4,5), !
 csm=csm)!
 elif self.method == 'sense':!
 self.unmix, self.gmap = sense.calculate_sense_unmixing(self.acc_factor, csm)!
 else:!
 raise Exception('Unknown parallel imaging method: ' + str(self.method))!
 !
 for c in self.calib_buffer:!
 recon = transform.transform_kspace_to_image(c[1],dim=(1,2))*np.sqrt(scale)!
 recon = np.squeeze(np.sum(recon * self.unmix,0))!
 self.put_next(c[0], recon,*args)!
 !
 return 0!
 !
 if self.unmix is None:!
 raise Exception("We should never reach this point without unmixing coefficients")!
 !
 recon = transform.transform_kspace_to_image(self.buffer,dim=(1,2))*np.sqrt(scale)!
 recon = np.squeeze(np.sum(recon * self.unmix,0))!
 self.buffer[:] = 0!
 self.samp_mask[:] = 0!
 self.put_next(img_head,recon,*args)!
 return 0	

BUFFERING	

BUFFERING	

CALIBRATION	

RECON	

Running the Python reconstruction

Open Source Reconstruction Frameworks

Gadgetron

COMPUTER
PROCESSING AND

MODELING -
Full Papers

Magnetic Resonance in Medicine 69:1768–1776 (2013)

Gadgetron: An Open Source Framework for Medical
Image Reconstruction
Michael Schacht Hansen1* and Thomas Sangild Sørensen2,3

This work presents a new open source framework for medical
image reconstruction called the “Gadgetron.” The framework
implements a flexible system for creating streaming data pro-
cessing pipelines where data pass through a series of modules
or “Gadgets” from raw data to reconstructed images. The data
processing pipeline is configured dynamically at run-time based
on an extensible markup language configuration description. The
framework promotes reuse and sharing of reconstruction mod-
ules and new Gadgets can be added to the Gadgetron framework
through a plugin-like architecture without recompiling the basic
framework infrastructure. Gadgets are typically implemented in
C/C++, but the framework includes wrapper Gadgets that allow
the user to implement new modules in the Python scripting
language for rapid prototyping. In addition to the streaming
framework infrastructure, the Gadgetron comes with a set of
dedicated toolboxes in shared libraries for medical image recon-
struction. This includes generic toolboxes for data-parallel (e.g.,
GPU-based) execution of compute-intensive components. The
basic framework architecture is independent of medical imaging
modality, but this article focuses on its application to Cartesian
and non-Cartesian parallel magnetic resonance imaging. Magn
Reson Med 69:1768–1776, 2013. © 2012 Wiley Periodicals, Inc.

Key words: image reconstruction; open source; GPU

INTRODUCTION

Image reconstruction software is an integral part of all
modern medical imaging devices, and medical image
reconstruction research is a strong and active field with
hundreds of articles published each year. In the field of
magnetic resonance imaging (MRI), great advances have
been driven by image reconstruction algorithms. Exam-
ples include parallel MRI reconstruction (1–3) and more
recently compressive sensing (4,5).

Most image reconstruction algorithms are published
without a reference implementation (i.e., without source
code). In some cases, the authors—or the device vendors
they collaborate with—are reluctant to share their algo-
rithms. In many other cases, there is simply no practical

1Division of Intramural Research, National Heart Lung and Blood Institute,
National Institutes of Health, Bethesda, Maryland, USA
2Department of Computer Science, Aarhus University, Aarhus, Denmark
3Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
*Correspondence to: Michael S. Hansen, Ph.D., National Heart, Lung, and
Blood Institute, NIH, NIH Building 10/B1D-405, 10 Center Drive, Bethesda,
MD 20892. E-mail: michael.hansen@nih.gov
Disclosure: The National Heart, Lung, and Blood Institute and Siemens Medical
Systems have a Cooperative Research and Development Agreement (CRADA).
Received 16 March 2012; revised 25 April 2012; accepted 2 June 2012.
DOI 10.1002/mrm.24389
Published online 12 July 2012 in Wiley Online Library (wileyonlinelibrary.com).

way of sharing the algorithms; they may rely on a great
deal of accessory code, some of which could be vendor spe-
cific or even contain vendor-provided code that cannot be
shared. Regardless of the reasons, it undermines the scien-
tific process that readers and reviewers are prevented from
reproducing the results of reconstruction research articles.
It is exceedingly difficult for other researchers to evaluate
how a given algorithm might perform given a different type
of data or how it might interact with other algorithms. As a
result, researchers who wish to build on previous work by
other groups often have to reimplement previous work for
comparison purposes, as there is no available common plat-
form for sharing medical image reconstruction algorithms.
Given the complexities of new reconstruction algorithms,
it may be difficult or indeed impossible reimplement the
methods described in research articles. This problem has
been pointed out by other researchers, e.g. in the report by
Buckheit and Donoho (6).

The proof-of-concept implementations that form the
basis of many publications have further limitations. They
are often unsuitable for deployment in a clinical (or clin-
ical research) environment where they could be tested
in broader patient populations. More specifically, the
reconstruction algorithm development is often done in
“offline” applications that are difficult to integrate with
medical devices in such a way that the reconstruction
can be performed “online.” Consequently, proper eval-
uation of a given reconstruction algorithm is not often
done until a medical device vendor implements it in a
commercial product. Furthermore, when developers wish
to deploy their algorithms clinically they could be lim-
ited by the device manufacturers reconstruction develop-
ment environment. As manufacturers are under regulatory
restrictions and consequently have long lead times on
integration of the latest hardware and software in their
platforms, delays in early testing of new algorithms can
result. Moreover, a new algorithm may rely on more com-
putational power than that is available from the manu-
facturers hardware; the algorithm may rely on dedicated
high-performance computing equipment such as graphics
processing units (GPUs) (7–9), or the algorithm may simply
need some software libraries that are not available or easy
to integrate into a commercial medical device.

Thus, it would be desirable to have an open source plat-
form for implementing medical image reconstruction algo-
rithms in general and more specifically MRI reconstruc-
tion algorithms. To address the above-mentioned concerns,
such a platform should have the following characteristics:

• Free. The platform should be freely available to all
researchers. Specifically, it should be provided with

© 2012 Wiley Periodicals, Inc. 1768

Gadgetron Architecture

12

Scanner Reconstruction	

Configured dynamically at run time	

XML Configuration	

Generic Scanner Integration

Example - Cartesian GRAPPA

§ High-throughput GRAPPA

§ Designed for multi-slice 2D
real-time imaging
(interventional)

§ GRAPPA coefficients
calculated on GPU

Cartesian GRAPPA

Online Python Editing

Converting Python chains to Gadgetron

Converting Gadgetron XML to Python

GPI	

A Graphical Development Environment for Scientific Algorithms	

Introduction	

•  Modular	

•  Side by Side Comparisons	

•  Ease of Reuse	

•  Data & Algorithm Analysis	

•  Reconstruction, Simulations, Pulse Sequence
Development	

Spiral Reconstruction	

ISMRMRD Support in GPI

https://github.com/hansenms/gpi_ismrmrd	

Running the Python reconstruction

Tear-Off Menu

Tear Point

Node Menu

Widgets

Node Label

Terminal/Console

Node Edge Port

Main Menu

Mouse Menu

Graphical interface	

K-space filter	
K-space filter	

coil combination	

Presentation Title Goes Here	
 68	

codeare	
	
Common	 Data	 Exchange	 And	 Reconstruction	
www.codeare.org	

codeare	
 69	

Realisation	
Algorithm	 library	 and	 client/server	 application	

§  N-‐dimensional	 Data	 structure	 called	 “Matrix”	
§  Algorithm	 dictionary	 for	 arithmetic,	 linear	 algebra,	 Fourier	
transformation,	 statistics,	 optimisation,	 ;ile	 IO,	 …	 	

§  Near	 textbook	 high	 level	 language	 for	 implementation	 	

	
	
§  Usage	
§  C++	 library	
§  stand	 alone	 application	
§  client	 server	 application	 for	 realtime	 scanner	 feedback	 	

Matrix<cf> A = phantom<cf>(256), B,!
!cxnoise = randn<cf>(256);!

DFT<f> F;!
B = F / (F*A + cxnoise);!
print (B, ‘B.png’, ‘r600’);!
fopen (f, ‘B.mat’, WRITE); !
fwrite (f, conj(B));!
fclose (f);!

§  Reconstruction	 strategies	
often	 involve	 multiple	
reusable	 steps	

§  Example	 on	 write	 is	 part	
of	 the	 package	 to	 	
demonstrate	 how	 this	 is	
achieved	 in	 codeare	

§  Real-‐day	 example	 involves	
the	 estimation	 of	 receive	
sensitivties,	 reduction	 of	
coils	 and	 subsequent	 	
CS	 reconstruction	

codeare	
 70	

Usage	
Reconstruction	 chain	

Critical Components of Pipeline Processing

§ Modularity

• Reusable code

§ Event driven processing

§ Multi-threading

§ Standardized raw data representation

• Meaningful data labels

THANK YOU

§ Jeff Voskuil, GE Healthcare

§ Amol Pednekar, Philips Healthcare

§ Wes Gilson, Siemens Healthcare

§ Nick Zwart, GPI, Barrow Neurological Institute, Phoenix AZ

§ Kaveh Vahedipour, NYU

§ Souheil Inati, National Institutes of Health

§ Joe Naegele, National Institutes of Health

§ Hui Xue, National Institutes of Health

Open Source Resources

§ Course Materials: http://hansenms.github.io/sunrise

§  ISMRMRD:
• http://ismrmrd.github.io
• http://github.com/ismrmrd/ismrmrd-python
• http://github.com/ismrmrd/ismrmrd-python-tools

§ GADGETRON:
• http://gadgetron.github.io

§ GPI:
• http://gpilab.com
• http://github.com/hansenms/gpi_ismrmrd

§ CODEARE:
• http://www.codeare.org

